

Basyx / TriComm Graphical Interface Software

System Operation Manual

TRI-OM Revision 2.1 04/05/2011

Operators manual Contents.

Connecting a PC to the BASYX PSC Overview Control Strategies Hardware Configuration	2 3
System Requirements Initial set up Uninstalling software	4
Connecting you Computer Direct connection Modem Connection Internet connection	5
Pass words Operator levels Programming levels	6
Status menu View Board status View system status View meter status Manual on/off Times override	7 7 8 8 9
Time And date setting	9
History down loading Sub metering	10 11

Connect using the GCS to PC connection and Software kit

This kit is designed to connect a PC or Lap top Computer to a GCS control card. Do not use this kit for any other purpose.

Supplied Components.

One RJ45 connection lead Note if you need a longer lead you can purchase a longer cable as a telephone extension cable. One RJ45 to 9 pin RS232 plug. One Program CD with instruction manual and soft ware on.

Connection Instructions.

Connect RS232 plug into 9 pin RS232 (serial) socket on your PC. Connect one end of the connection lead onto the RS232 plug and the other end into the socket with the word "DIRECT" next to it on the GCS control board. **Do not connect to socket on the corner of the GCS board**.

Note if your PC or Lap Top does not have an RS232 output port you can Purchase a USB to RS232 converter at leading electronic stores such as Jaycar, Altronics and some computer sales outlets.

Software installation instructions.

Ensure the GCS unit is working i.e. A light will be flashing on the GCS board.

Insert the GCS CD in to your PC and locate the file called "Set up. Exe".

Follow on screen instructions.

After soft ware is loaded locate the working file on the CD. For commercial systems this will be the name of the site, drag and drop this file to the following location on your PC.

C:/Program files/triangle micro systems/BASYX/

Locate the BASXY icon on your desktop screen and double click it. A screen will open up click on the name of the site file you loaded, then click on "exit" then shut down the BASXY software. This causes the site file to be registered on your PC and does not need to be performed again unless you are installing the software on to another PC

Click on the "BASXY" icon again to start the software, then click on the name of the site file that you placed in the BASXY directory. You should now see a list of several files on the upper left of the screen.

Where you see the direct window enter the port number of your RS232 output plug this will probably be 1 or 2 but with USB to RS232 converters it could be a number as high as 20. In the Baud rate window enter 19200 from the pull down list.

Note to locate the correct port number go to "control panel, system, Device manager. Ports (COM & LPT), next to the wording communication port you should see the words "COM1" if com 1 is used. If you are using a USB to RS232 converter look for a reference to the converter double click on it and look for the Com port used by it.

After entering the correct data click on direct connect after a few seconds you should see the words connected and the date and time, click on the word exit, you are now ready to use your BASXY software.

For commercial systems.

This instruction Manual and site details are included on this CD. You should also have received site specific instructions from your installation company.

Un-installing the Software

Do not delete the BASYX folder from the windows explorer. The install shield uninstall information is located in this folder.

To remove the TriComm Installation and Setup Program:

- 1. Start Windows[®] 95/98/NT/XP Operating System
- 2. Close all open program windows.
- 3. Select the Settings folder from the Start Menu
- 4. Select the Control panel Icon
- 5 Select the ADD/REMOVE programs Icon.
- 6. Select BASYX from the scroll bar.
- 7. Click on Add/Remove Programs button
- 8. The program will automatically remove the files and settings created during setup.

Overview:

The BASYX[®] PSC stand-alone controller is an inexpensive alternative to a full direct digital control system. The unit provides direct digital control and environmental monitoring along with complete electrical system monitoring and reporting. The BASYX[®] system contains all onboard firmware, clock and memory for complete stand-alone operation.

Pre-programmed Control Strategies:

The BASYX[®] is simple to control and operate and has the following algorithms ready for your use:

Basic Time Schedule Control Lighting Control Air handler control Heat pump control Setpoint Control Unoccupied Setup/Set Back Control Setpoints Heating/Cooling Outdoor Air Reset Control Holiday Schedule Programming Electrical Load Shedding Power monitoring and Sub-Metering Power Billing System Alarm Push button Timed overrides Interlock control 0-10vdc Damper and Valve Control Lead Lag Pump Control History (Temperature and Power) Data Recording Outdoor air reset control

Hardware Configuration:

The PSC controller contains eight (8) triac outputs for on/off control, eight (8) universal inputs for temperature and contact monitoring and four (4) electric or pulse meter inputs. The PSC may be connected to additional BASYX[®] PSC controllers through a twisted pair cable, with a total system configuration of 256 controllers. This network will allow single point access through 1 modem or direct connection.

BASYX[©] Options: (Communication)

An optional 2400 baud plug-in modem module allow remote interrogation and data retrieval for all controllers connected to the communications loop. An optional infrared interface which provides programming and monitoring capabilities through a palm-top or other infrared compatible device.

3. A keypad interface with digital display to allow system access, limited monitoring and control interface.

Software Interface:

The BASYX PSC controller is accessed through a Windows interface program, and will allow text and graphics interface, along with a complete polling package for off-site retrieval of monitoring and point data.

System Requirements:

Before you set up the BASYX[©] BASYX PSC Installation and Setup Program [™] software, take a few minutes to make sure your computer meets the minimum requirements needed to run

and connect to the BASYX PSC controller.

To use the Installation and Setup Program for the BASYX[®] BASYX PSC controller, you need the following:

1. IBM-Compatible personal computer with an 80486 or Higher processor.

(Pentium 130 or higher recommended)

- 2. Hard disk with 4 megabytes of free space
- 3. Microsoft mouse® or other compatible pointing device.
- 4. VGA or compatible display capable of 800x600 resolution
- (Super VGA or higher recommended)
- 5. Eight megabytes of random access memory.
- 6. Microsoft Windows® 98/NT/XP.
- 7. CD ROM Drive
- 8. Unused Serial Port or Modem connected to an outside telephone line.
- 9. Cable/Phone Connection to BASYX[©] BASYX PSC controller.

Connecting your Computer to the Basyx System.

When you start the soft ware you may be prompted to enter a pass word, enter the pass word here then press the logon button. If you enter an invalid pass word the screen will not change.

🗖 Login		×
Enter Password		
		Login

You will then see the following screen.

Communications		_ 🗆 X
Direct Port Delay Modem Port Port Delay Modem Type	Setup String ATEO\QO\J1V1	•
System Name Entry System Name Phone # IP Address Port Save	testing high walls 277 William ST 3791 505 St kilda Rd Bowen Home control office system portable board	
Connection Status Direct Connect Modern Connect Internet Connect Work Offline Hang-up Zone Enable Current System = testing high walls Exit Exit	portapie board Portland CES Scala Suitcase testing high walls TMST00 LCe System	
	,	

On the right hand side you will see a list of all preprogrammed systems currently on your computer please click on the one you need to connect to. Next make sure the connection details are entered on the screen.

For direct connect use.

Ensure that the baud rate is set to 19600 and the direct port of your computer you are using for connection is shown in the top left hand window. Your computer must be connected to the GCS system via a direct connection to the RS-232 RJ-11 Jack and the Serial Port of your computer.

For Modem connect use.

Ensure that the coms port that your modem is using is shown in the modem port window, the phone number is shown in the correct window and the correct type of modem you are using is shown in the modem type window.

For internet connection.

Ensure that the IP address and port number is shown in the correct window.

You can also choose to work off line (no connection to a system) be clicking on the work off line button. Push the button for the type of connection you are using and look at the window shown on the lower part of the screen to see when communication has been established. When it has you will see the current data and the words CONNECTED TO PSC. you can now click on the EXIT icon to leave the current screen and start working with the GCS automation system.

Operating the system.

The pass work you entered will dictate what parts of the system you will be able to enter and manipulate. There are 3 operating levels of passwords and 3 programming level passwords as follows. Operator levels.

Level zero allows you to look at the graphic screen.

Level one allows you to look at the Graphic screen and change set points

Level two allows you to look at the status screens and change time/date Programming levels.

Level three allows you to program the unit.

Level four allows you to change passwords and enter logic program mode.

Level five allows you to reset meters.

Operator level passwords.

Level Zero.

At level zero you may click on the graphic icon at the top of the screen and enter the graphics screens. On the right of the screen you will see a vertical row of buttons those with names on are connected to a graphic window which will allow you to see what is happening with the system. Clicking on any of these buttons will bring up the appropriate window. You will now see the graphic image with control windows on top. When you open a window the computer will examine the GCS control system and then display the information on the screen. This may take some time if many boards are connected to the system. You will now be able to view any inputs and outputs placed during programming mode.

Level one. Changing data.

At level one password you will be able to change set points and time schedule data shown within the graphic screens.

To change set points or time schedule data. Click on the green **edit** button at the lower right of the screen you can now change data. When finished click on **send to controller** located where the edit button was. *Note when entering time data please use the format 00:00*

Level two

At level two you will be able to view all of the status screens. First highlight the name of the board you want to see on the left of the screen, then at the top of the screen click on status then click on the item you need.

Status Menu

Viewing Board Status

Digital Input Status - Shows current On/Off status of all four inputs.

Time Accumulation - Shows the total amount of time, all four digital inputs have been ON. The Enable button must be highlighted for this operation to work. To enable or disable Click **Auto Update** then Click Enable or Disable then press the Reset button.

Universal inputs - Shows Current Temperatures and on/off if input is shorted or open.

Digital Outputs Status - Shows Current Output ON/OFF Status and what it is controlled by.

Analogue Output Status - Shows Current Analogue output position 0% - 100% (0vdc - 10vdc)

🚥 Input & Output Status 🛛 Board Name = board1	TMS		X
TMS100 Status	VAV 100 Pro	gramming And Status)
Universal Inputs			Digital Input Status
Chill 1,2 flow OFF Deg	CHWP 2 FS	OFF	Chill 1 fail OFF
chill 1,2 ret OFF	CWP 1 FS	OFF	Chill 2 fail OFF
OFF	CWP 2 FS	OFF	CHWP 3 FS OFF
CHWP 1 FS OFF	OAT	5.2	GFAR OFF
Digital Output Status			Time Accumulation Minutes Sec.
Chill 1 run OFF by Setpoint	GFAR	OFF by Daily	Chill 1 fail
Chill 2 run ON by Time Schedule	Boiler fail	OFF by Daily	Chill 2 fail 0 0
Chill 3 run ON by Time Schedule	Chiller fail	ON by DI/DO Alarm	CHWP 3 FS 0 0
CWP chill 3 ON by Time Schedule	FCU problem	OFF by Daily	GFAR 0 0
Analog Dutput Status Status Vdc Ov		W Min Max Action 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C Enable C Disable Reset
Auto - Update TMS-100	TMS-'	100 VAV-100	Updating

View System Status

System Status gives the current status of all boards connected on the communications bus. Use this function to get a quick overview of the entire system.

			System Status Report		
			System Status riepon		
	board1.TMS	PC 26/03/03	11:58:18 AM	Version: 035	Wed 03/26/
	Comm Test>Pass				
>	Digital Outputs Description	Status	Control by		
>	Chill 1 run	OFF	Setpoint		
>	Chill 2 run	ON	Time Schedule		
>	Chill 3 run	ON	Time Schedule		
>	CWP chill 3	ON	Time Schedule		
>	GFAR	OFF	Daily		
>	Boiler fail	OFF	Daily		
>	Chiller fail	ON	DI/DO Alarm		
>	FCU problem	OFF	Daily		
>	Analog Input Description	Status	Туре		
>	Chill 1,2 flow	OFF			
>	chill 1,2 ret	OFF			
>		OFF		2	
>	CHWP 1 FS	OFF			
>	CHWP 2 FS	OFF			
>	CWP 1 FS	OFF		Downloading P	'lease Wait
	GVD 3 55	OFF			

View Meter Status

Meter Status shows the current reading for Kw, KWh, KW peak, and time of occurrence.

The Edit Button Allows you to customise the Unit Type you are monitoring with the ability to change to names.

🚥 Meter Status	
Meter Readings kwh 0000000 kw 000000 kw Peak 00000 Peak Time 00:00	Meter in Process
Edit Meter Four	Exit

Manual On / Off

The Manual On/ Off Menu Can Override any output On or Off at anytime, By pressing the ON or OFF buttons. The Auto Button Releases the Output from manual control. Remember the status boxes show the status of the button pushed and not the board status. If you want to see the current board status use the board status menu. If you have turned an output on via manual control the output will show on/off according to your control.

•	Manual ON/OFF					×
	- Manaul Control					
	unit 1 fan run	ON	OFF	Αυτο	<mark>suto</mark>	
	unit 1 high sp	ON	OFF		<mark>suto</mark>	
	unit 2 fan run	ON	OFF	AUTO AUTO	<mark>xuto</mark>	
	Fresh air fan	ON	OFF	AUTO 🖊	<mark>vuto</mark>	
	Toilet ex	ON	OFF	AUTO A	<mark>vuto</mark>	
		ON	OFF	AUTO A	<mark>vuto</mark>	
		ON	OFF	AUTO AUTO	<mark>\uto</mark>	
	Board in alarm	ON	OFF	AUTO 🖊	<mark>vuto</mark>	
		O Disable		C Enable		
		Current	Output Statu	IS	<u>E</u> xit	
	,					

Note: if you have used the logic program to control outputs you may be unable to operate the point via the Manual screen and the coloured bad at the right of the screen may show white.

Timed Override

The occupied status may be overridden during unoccupied periods by utilising the BASYX[©] timed override algorithm. This feature works in conjunction with the push button override algorithm and may be used to override the system in advance of unoccupied hours or remotely. This feature is designed to be used once for each override event and will be cleared when the override time has elapsed.

Note: If a push button override has been assigned to the desired point, the push button will override any time value that has been entered into the timed overrides input box with the programmed value of the push button override program.

Go to the STATUS menu and select TIMED OVERRIDE

To enable Timed Override function of the BASYX[®] controller, you may access the timed override screen from the STATUS menu and selecting the TIMED OVERRIDES option. Press the Edit button then Select the input box next to the point you wish to change or override. Enter 0 to clear a override or any other number of minutes to change the remaining time each point will be in the occupied status. Press the Send to Controller button to download the information to the system board.

fimed Override	s					_ [×
– Timed Override	Status						
No1 fan run	10	min.	Toilet ex fan	40	min.		
No 1 fan high	20	min.		25	min.		
No 2 fan run	30	min.		16	min.	Enable	
Fresh air fan	40	min.	Board in alarm	00	min.	C Disable	
Hint: Enter Ove	rride in	Minutes	: (overrides to occ	upied sta	ate or "I	ON'')	
		S	end To Controller			<u>E</u> xit	

Time And Date

Go to Program, time/date.

To Program Time and Date You Must First Press the Edit Button

Next, Manually Enter the Time, Date, and Day or Week or Press the **Display Computer Time** Button. To Save **Press the Send To Controller** Button (see fig 2).

If you want to save the Time ,Date and Day of Week to all the boards Connected Press the **Synchronise All Clocks** Button.

Time and Date	3
Time and Date hr min Sun = 0 mm dd yr Mon = 1 Date m Tue = 2 Wed = 3 Day of Week Fri = 5 Sat = 6	
Display Computer Time Synchronize All Clocks	

History menu

Note, in order to retrieve history data you first have to program what data you wish to retrieve in the history set up window, see programming guide.

Retrieving the History Data

The history data makes the BASYX system a very powerful stand alone controller. The history may be retrieved in 10 ways. Each mode will change which data the system will retain in the comma separated file (csv).

Click the data you wish to receive then enter the Start Date and End Date.

Choose to retrieve data from one board or all boards.

Next, Press the Retrieve Data Button

A dialog box will open select the Folder you would like to keep the File data in then enter a file name.

Remember Basyx Program will automatically add the .csv extension just enter in the file name example: test . After the file name is entered Press the open button.

🗳 Retrieve History Data 📃 📃	×
History Selections	
🔽 Kwh Meter 1 🔽 Kw Peak Meter 1	
🔽 Kwh Meter 2	
🔽 Kwh Meter 3 🔽 Kw Peak Meter 3	
🔽 Kwh Meter 4 🔽 Kw Peak Meter 4	
KW Meter 1 Analog Inputs (1-8)	
☑ I/O Runtimes	
System Setup	
Retrys 02 Month Day	
C Retrieve Data All Boards Start Date 02 10	
Retrieve Data From One Board End Date 03 20	
Sub-Metering	
History Data Status Status	
Record Count	
Wait Cycles	
<u>Cancel</u> <u>R</u> etrieve Data <u>Exit</u>	

Sub Metering Setup

Sub metering allows you to bill each tenant using Ct's or separate power or water meters. The BASYX sub metering program will then allow you to generate a separate bill for each meter in your system.

🚥 Sub Metering Setup	_ 🗆 🗙
Billing Header Tenant Name Apartment G:01 Address Lex apartments City State Zip Billing Setup Price Per Pulse \$ Billing Date	Meter in Process Unit G.01 hot water Unit G.01 cold water Unit G.02 cold water Unit G.02 cold water Due Date
<u>Save</u> To File	<u> </u>

Programming steps.

To program sub metering hold the ALT key down and press the <M> key. You will then see the screen shown above.

Ensure that the meter you wish to program is high lighted on the right side of the window. Enter the tenants name and address details on the billing header part of the window.

Enter the price you wish to charge for each Kw of power of litre of water.

Enter the billing date, this is the date you are down loading the billing data.

Enter the due date, this is the date you wish the bill to be paid by.

Then press <Save to file> and continue programming the next metre by high lighting the meter on the right side of the screen.

Note if you have other meters on other boards press <exit> high light the next board file and again press <ALT> <M> to program those meters. Continue this way until all of your meters are programmed.

Down loading sub metering data.

Under the history pull down menu click on <retrieve history data to file>. Follow the instructions on page 10 but place a tick in the Sub-metering window. Make sure you tell the system if you want to retrieve from one or all boards. Press <retrieve data> and follow the prompts, make sure you give the CSV down load a file name.

The computer will tell you when the history down load is complete.

Look at the place on your computer that you down loaded the file to, you will notice a separate CSV file for each meter.

Use Microsoft Excel © to view each file you will now be able to add any more details you need on the bill and print it out.

Menu'	ion two programmers manual s in brief	13
Contro	ol Hierarchy	15
File M	enu	15
	Open new job	15
	Edit existing job name	16
	Edit existing Board file name	16
	Adding Board File	16
	Deleting Board file	16
	Printing Board file data	16
	Passwords	17
Progra	amming menu	18
U	Point assignments	18
	Time and date	18
	Time schedules (special schedules	19
	Duty Cycle	19
	Occupied set points	20
	Slide control function	21
	Reset control function	22
	Holiday Schedule	23
	KWh interval and pulse	24
	Load shedding	24
	Push button timed override	25
	Digital input override	26
	Output lock	26
	Out side air change over	27
	Daily schedule	27
	Analogue output schedule	28
	Lead Lag	29
	Temperature averaging	30
	Programming sensor set up	31
	Minimum on/off times	31
	Reverse output action	31
	Global communications	32
	History mode	32
Graph	ics menu	33
•	Status mode	33
	Programming Mode	33
Histor	y menu	36
	nunications menu	36
		38
Alarm	s menu	
	Temperature Alarm function	38
	digital input/digital output alarms	39
	digital input/analogue input alarms	39
	Alarm system status	40

Section three Advanced programming structure.

Debug Programming	41
Logic programming	42
Appendix A Notes	46
Appendix B Installation checks	47
Appendix C Engineering Documents	48
Appendix D Programming up date register	49
Appendix E Notes and requirements for BASYX PSC	50
Appendix F Fault finding list	51
Appendix G Logic Variable chart	52
Notes	57

Software Main Menu's	<i>File -</i> The File menu allows you to create, save, or close the project information located on your PC, which will interact to the BASYX system.
	Program - The Programming menu allows you to program the desired setpoints or control functions for the BASYX System.
	Status - The Status menu is an online function which will give you the status information for the BASYX panel to which the system is connected and communicating.
	<i>History -</i> The History mode menu is used for data logging of information with the BASYX system.
	Communications - The Communications menu is used to connect to a specific PSC controller and is also used to download program information from the PC file to the controller.
	Help - Help Basyx Operations Manual
File Sub Menu's:	New Job - Create a new Job Folder
	Open Job - Open an existing GCS BASYX file.
	Edit Job - Edit existing GCS Basyx File
	Print Job - Print Basyx Board File Data
	Close - Close the current GCS BASYX panel file.
	Save - Save the current information in the PC Database to a BASYX File
	Pass words – Set pass word protection off/on and enter new pass words.
	Exit - Exits the system without a save.
Program Sub Menu's:	Point Assignment - Used to give meaningful names to Hard wired points.
	Time/Date - Sets the current time and date for the System
	Daily Schedule - Sets occupied periods for the points connected.
	Setpoint Occupied - Sets occupied and Unoccupied target temperatures.
	Special Schedule - Sets up to four occupied periods for each point connected Such as outside lighting.
	Reset Control - Used for boiler or Chilled water control to reset the temperature based on another temperature input such as outside air.
	Holiday Schedule - Disables occupied setpoints for any points which fall on the scheduled holiday.

	KWH/Interval - Used for power meter demand pulse setup.
	<i>KWH Shedpoint</i> - Used for Demand load shedding to shed loads when the current estimated usage is projected to set a new peak demand.
	Alarms - Used to the alarm point and activation levels for critical points.
	Push Button Override - Sets the number of minutes the sensor pushbutton will activate the system points.
	Output Interlocks - Used to tie system points together for proper operation.
	Analog Output Setup- Used in conjunction with the GCS AO board for valve 0-10vdc valve control and 0-10v motor control.
	Lead / Lag Control- Used to control boiler or chilled water pumps.
	Sensor Setup- Used to set Sensors as Thermistor,0-10vdc or 4-20ma with scaling
Status Sub Manu'au	<i>History Mode -</i> Used to set the desired data logging format for the internal history log.
Status Sub Menu's:	Board Status - Shows status of the current system points.
	System Status -Shows status and created a report of all Points current status.
	<i>Meter Status</i> - Shows the current status of the demand load shed.
	Manual ON/OFF - Manual locks in the on or off position.
History Sub Manu'au	<i>Timed Override</i> - Software initiated override of unoccupied areas.
History Sub Menu's:	Retrieve History Data - Retrieve comma delimited file of the system history.
	Sub- Metering - Used to setup Tenant information for power billing.
Communications Sub Menu's:	Connect -Used to connect and download system information.
	Restore System Data -Used to Send PC File Data To Controller
	Hang up - Disconnect current communications session.

Control Hierarchy

The BASYX[©] controller has a predefined control hierarchy. There are only two schedules that can put an output into occupied mode. Special schedule and Daily schedule, the rest of the control algorithms are designed to turn the output OFF. When trouble shooting the system operation be sure to review all control hierarchy below: (The higher algorithms will dictate turning the status of the point off.)

The hierarchy of the BASYX[©] PSC is as follows:

- Manual On/Off
- Output Locking Control
- TimeWatch Control
- Pushbutton timed override
- Keypad Access Override (not in use at this time)
- Timed override
- ¬ Temperature Alarm Schedules
- <u>Temperature Unoccupied Schedules</u>
- Demand Load Shedding
- Holiday Schedules
- Lead Lag Schedules
- Special Schedules
- Set point Occupied
- Daily Schedules.
- Each section above has been included to aid you in setting up your BASYX[©] controller.

File Menu

Open New Job File

To Add a New Job or System select NEW from the file menu .

Enter the name of the Job (System name) you wish to use to identify the system files.

Enter the System Phone Number. (only for phone line communication).

Enter the **number of boards** which are physically connected to the 485 communication bus. Then Press Save.

Now Press Exit.

🚥 Syste	em Setup						×
	System Name	New job nam	e				
F	hone Number	555 1234		_	_	_	
	IP Address	24.163.47.18	15		IP Port	1675	
Н	ow Many Boar	ds Are Connec	ted ? 52				
<u>A</u> dd I	New Job		<u>S</u> ave			Ē	xit

Working with Existing Files.

Selecting a file:

To modify or change information in an existing file select FILE and **Open** from the Menu bar. Select the sub folder which will match the 10 Character name you entered for the project when you first entered the job data. Select the board number you wish to work with and press the APPLY button.

🚥 Edit Job	
Edit Job Name	Edit Board File Name
☐ office system ☐ Scala ☐ testing boards ☐ Testing rig Enter New Job Name	Enter New Board Name
BASYX	Save Board File Name
Add New Board File Delete	: Current Board File Exit

Once the Apply Button has been pressed the Software will automatically open the Communications Window you must connect to the Basyx controller to **program.** Press **Exit** To Cancel.

Edit Existing Job Name and Job File

To edit existing Job or System name select **Edit Job** from the file menu . To edit the Job Name Double Click on the job you wish to edit (see fig1). The job name should be displayed in the Enter **New Job Name** Box. Edit Job Name then Press **Save Job Name** Button

Edit Board File Name

To edit existing Board File Name Double Click on the job name which holds the Board Files you wish to edit . The Single Click the Board File Name You wish to edit. The Board File name should be displayed in the **Enter New Board Name** Box. Edit Board File then Press **Save Board File Name** Button. Note your new board file name should be followed by an under score and the board number, for example a new name for board 2 would be **newname_2.GCS**

Adding Board File Names

To Add a new Board File Name Double Click on the job name which holds the Board Files you wish to add . The Single Click any Board File Name this will enable the **Add New Board File** Button . Then Press **Add New Board File** Button.

Deleting Board File Names

To Delete a Existing Board File Name Double Click on the job name which holds the Board Files you wish to delete. The Single Click any Board File Name you wish to delete this will enable the **Delete Current Board File** Button . Then Press **Delete Current Board File** Button.

Print Board File Data

To print Board File Data select Print Job from the file menu .

To select the data you want to print Single Click the selection box a check mark should be displayed (see fig1). Then press the **Print** Button.

Note the Basyx program uses Windows default printer settings if any error occurs check Your windows printer settings .

Pass words

To use this section you must have the preset pass word for level 4. Contact your distributor to obtain this pass word.

Enter pass words for levels 1 to 4 and meter pass word then tick the enable pass word box.

Level zero allows you to look at the graphic screen.

Level one allows you to look at the Graphic screen and change setpoints Level two allows you to look at the status screens and change time/date Level three allows you to program to unit. Level four allows you to change passwords and enter logic program. Note meters can only be reset to zero by turning passwords off.

Password Set	up 📃 🛛 🗶
- Password Setu	p
Meter Reset	RESET
Level 0	zero
Level 1	one
Level 2	two
Level 3	three
Level 4	four
I Enable Pas	swords
	Save To File <u>E</u> xit

Program Menu.

Point Assignments

Point assignments are 15 character labels of text, numbers or spaces which are designed to help you identify the hardware connections to the BASYX controller. The DO's AI's ,AO's and DI's are assigned labels with this function. See the screen shown below for a sample of point labels.

To save your work to a file:

Press the Save Data To File Button.

Note: This Data is saved in the PC File Only

Point Assignment		
Digital Dubputs Output 1 Chill 1 run Output 2 Chill 2 run Output 3 Chill 3 run Output 4 CWP chill 3 Output 5 GFAR Output 6 Boler fail	Universal Inputs Input 1 Chil 1.2 flow Input 2 chil 1.2 ret Input 3 I Input 4 CHWP 1 FS Input 5 CHWP 2 FS Input 6 CWP 1 FS Input 7 CWP 2 FS	Cligital Inputs Input 1 Chill 1 fail Input 2 Chill 2 fail Input 3 CHWP 3 FS Input 4 GFAR Analog Outputs Output 1
Output 7 Chiller fail Output 8 FCU problem	Input 7 CWP 2 FS Input 8 CAT	Output 1 Output 2 Output 3 Output 4
	Edit	Updating

Time And Date

To Program Time and Date You Must First Press the **Edit** Button

Next, Manually Enter the Time, Date, and Day or Week or Press the **Display Computer Time** Button. To Save **Press the Send To Controller** Button (see fig 2).

If you want to save the Time ,Date and Day of Week to all the boards Connected Press the **Synchronise All Clocks** Button.

🚥 Time and Date	_ 🗆 X
Time and Date hr min Time 10 41 Date 03 26 03 Day of Week 03 Version# 035	Sun = 0 Mon = 1 Tue = 2 Wed = 3 Thur = 4 Fri = 5 Sat = 6
DisplayComputer Time Synchronize	All Clocks
Edit	<u>E</u> xit

Time schedules (Special Schedules)

The special schedule is used to set up four separate occupied periods for a point. The special schedule will enable the **Set point occupied** temperature control program to maintain the desired occupied setting.

Press the Edit button to start programming

Enter your ON and OFF times in the Enter Schedules Section

Press the Output you wish to program

The OUTPUT IN PROCESS selection circle will be filled in for the output

Enter the Schedule Numbers or zero For Monday

Repeat previous step for each day.

Placing ticks in the Binary output link boxes will save you from repeating the steps for any other outputs on the board that are to operate with the same time schedule.

Time Schedules		
Special Schedules 1 2 3 4 Mon 01 00 00 00 Tue 01 00 00 00 Wed 01 00 00 00 Thur 01 00 00 00 Fri 01 00 00 00	Output in Process No1 fan run No1 fan high No2 fan run Fresh air fan Toilet ex fan	Enter Schedules 0n Off 1. 07:30 18:00 2. 08:00 17:30 3. 08:30 17:00 4. 00:01 23:59 5. 00:00 00:00 6. 00:00 00:00
Fri 01 00 00 00 Sat 00 00 00 00	•	6. 00:00 00:00 7. 00:00 00:00
Sun 00 00 00 00 Enabled DUTY CYCLE	C Board in alarm	8. 00:00 00:00 9. 00:00 00:00 10. 00:00 00:00
1 2 3 4		11. 00:00 00:00 12. 00:00 00:00
Schedule Link Binary Ouput Link 1 🗖 2 🔽	3▼ 4□ 5□ 6□	7 🗖 8 🗖
Send To All Controllers	Send To Controller	<u>Exit</u>

To Save Press the Send To Controller Button.

Duty cycle

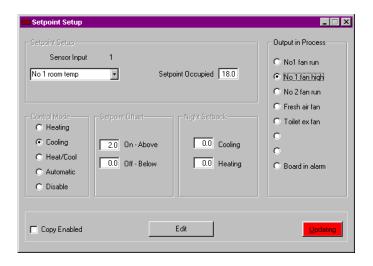
Also within the Time schedule window is the duty cycle it works as follows.

An hour is divided up into to four 15 Min intervals. check box 1 = 0.15min check box 2 = 16-30min check box 3 = 31-45min check box 4 = 45-60min any one of the check boxes enabled will cause the output to be off for that 15 minute interval every hour.

Setpoint Occupied

The BASYX[©] controller is designed to maintain comfort levels during occupied periods. The comfort level is a temperature setpoint which the system will operate to maintain during the times the points are Scheduled as occupied. A control point is scheduled to the occupied mode when the time schedule for the current day has a start time less than the present system time and less than the scheduled stop time. When a system is in the Occupied mode. The occupied setpoint will be used as the target temperature for the system.

The BASYX[©] controller also increases the energy efficiency of the system by allowing for reduced setpoints in the heating season or raised setpoints in the cooling season for unoccupied periods of the building. These setpoints are utilised for any point where the current time falls outside the scheduled occupied time periods.


To enable the Temperature Control Function.

Select PROGRAM from the menu selection and choose Setpoint Occupied.

Press the Output you wish to program.

The OUTPUT IN PROCESS selection circle will be filled in for the output.

Choose the control mode by clicking on the selection circle so that it is filled in with a black dot. The control modes operate as follows and must be set up for proper operation:

Heating - The heating control mode will only be allowed to activate (Energise) when the system is indexed to the heating mode.(Outside air below entered switch-over set point).

Cooling - The cooling control mode will only be allowed to activate (Energise) when the system is indexed to the cooling mode.(Outside air is above entered switch-over set point).

Heat/Cool - This control mode will active (energise) the point when the temperature is above the entered setpoint plus the offset above and when the temperature is below the entered setpoint minus the offset below.

Note:- The heating/cooling Changeover is set from the **Output locking** selection from the Program Menu.

Analog input number eight must be the outdoor air temperature sensor. The system will be in the cooling mode when the outside air temperature is one (1) degree above the setpoint entered and will index to the heating mode when the outside air temperature is one (1) degree below the setpoint entered.

- Choose the input sensor that will be evaluated against the desired setpoint.
- Enter the setpoint or target occupied temperature for this point.
- Enter the offset temperatures which act as a deadband to prevent unit cycling. (1 degree is recommended for each).
- Unoccupied Temperature control Enter the Night Setback temperature for cooling or heating. Note You Cannot Enter A Cooling And Heating Setback Temperature at the same time Enter Either a Cooling Setback Or a Heating Setback (zero disables).
- This function will work similar to the occupied temperature control, but uses a raised setpoint in cooling seasons and a reduced setpoint in heating seasons.
- Repeat for additional temperature control points for this controller.
- To Save Press The Send To Controller Button.

Slide Control function

To use the slider on the wall sensors to reset the set point for an output the following setup instructions must be observed.

First go to **sensor input/output setup**, locate the input you are using for the adjustment and set the sensor type 0-400ohm. Then set the sensor low/high to the minimum and maximum of the range that you wish to use (example 150 Min to 300 max = a temperature range of 15 to 30 degree's

📧 Input/Output Setup				
Gensor Type Setup Sensor Minimun DN - DFF Setup	inutes Off = 24vac			
Type Low High Units Decimal ON Room stat Thermistor 00 00 000.0 Fan run 00 Set point adj 0-400 Ohm 150 300 000.0 Fan high 00	0FF 00 Reverse 00 Reverse			
Set point adj 0-400 Ohm 150 300 000.0 Fan high 00 Damper con 0-10k/0-5vdc 00 10000 000.0 Heat valve 00 Thermistor 00 00 000.0 Cool valve 00	02 Reverse			
Themisson OC OC	00 Reverse 00 Reverse			
Heat ret temp Thermistor O O O O O O O O O O O O O O O O O O	00 Reverse			
Gensor Averaging Setup	Celsius/Fahrenheit-			
1 2 3 4 1 2 3 4 Chill ret temp 0				
Edit	Exit			

Next go to **setpoint linking** in the **stat link** box place the number of the input where the slider is connected. On the right of the screen place a number one in the **setpoint box** of any output you wish to control. If you now look at the **set point occupied box** located on the **set point occupied** screen and move the slider you will see the set point change according to your set up information. You can now set any off sets you need to provide you with a dead band between heating and cooling set points. This can be done by placing the number of degrees you need to off set by in the **off set** part of this screen or by placing the data in the **set point occupied** screen. Notes, by using the number 1 in the set point box as shown here you are using the cooling set point box shown on the top

🚥 Output Locking	
Setup Output Looking Fan tun O Day damper O Fan high O Night damper O Cool valve O Dutput 8 O Diddox Akr Lookoot Cooling Mode Above Diffeel OO Setpoint OO	Sepont Link: Setup: 1. Cooling Setpoint 00.0 2. Heating Setpoint 00.0 Fan setpoint 00.0 Cool valve 01 00.0 Day desper 00 00.0
Heating Mode Below Offset 00.0 File/Link Stat Input Number 02 E.d4	Night damper 00 000 00 000 Output 8 00 000

right hand part of the screen. If you put say 2 in that box your set point will have 2 added to it or -2 will have 2 removed from it this means that you can also use this box to add offsets ie put -1 in the cooling box and 1 in the heating box. So that all output set point boxes that you place 1 in will have 1 deg removed from the slider set point and all output set point boxes that you place 2 in will have 1 deg added to it.

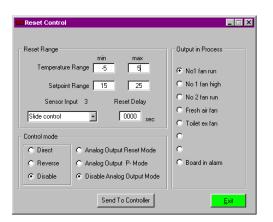
Reset Control function

Many systems require the ability to change the setpoint automatically when the outside air temperature changes. Systems that might utilise such a strategy are chilled water systems or heating systems. The BASYX controller allows for very simple and effective means to use reset control for your points.

Reset control automatically changes the setpoint for the occupied temperature control schedule. The set point will be calculated based on a simple proportional relationship. Enter the minimum and maximum outside air temperature. Enter the minimum and maximum setpoint levels. Select direct for a reset calculation that will raise the setpoint as the temperature measured increases or reverse which will lower the temperature setpoint as the temperature measured increases.

Programming Reset schedules for Analog outputs

Many systems require the ability to change the Analog Outputs setpoint automatically when the outside air temperature changes. System that might utilise such a strategy are chilled water Valves. The BASYX controller allows for very simple and effective means to use reset control for your Analog Outputs.


Reset control automatically changes the Analog Output Setpoint for the occupied control schedule. The Analog Output setpoint will be calculated based on a simple proportional relationship. Enter the minimum and maximum outside air temperature. Enter the minimum and maximum setpoint levels. Select direct for a reset calculation that will raise the setpoint as the temperature measured increases or reverse which will lower the temperature setpoint as the temperature measured increases. Then Select Analog Output Reset Mode so the controller knows that you wish to reset the Analog Output Setpoint. Use Analog Output P - Mode when you need absolute proportional control of the analog Output it does not change the setpoint instead is directly resets the position of the analog output. The Setpoint Range is the analog output Position (0-255 / 0vdc - 10vdc).

Example

To use an input to reset the set point for an output the following setup instructions must be observed. First go to **sensor input/output setup**, locate the input you are using for the adjustment and set the sensor type to the type in use. Then set the sensor low/high to the minimum and maximum of the range that you wish to use (example -50 min to 50 max = 5 deg below set point to 5 deg above set point). This will set the max range of the output.

🚥 Input/Output Setup								
- Sensor Type Setup-						1 – Minimun ON - OFF Setup		- Reverse Action
			Sensor				Minutes	Off = 24vac
	Туре	L	ow High	Units	Decimal		ON OFF	
No 1 room temp	Thermistor	•	00 00		000.0 💌	No1 fan run	00 00	Reverse
No 1 air temp	Thermistor	•	00 00		000.0 💌	No 1 fan high	00 00	Reverse
Slide control	0-400 Ohm		50 50		000.0 💌	No 2 fan run	00 00	Reverse
No2 room temp	Thermistor		00 00		000.0 💌	Fresh air fan	00 00	Reverse
No 2 air temp	Thermistor	•	00 00		000.0 💌	Toilet ex fan	00 00	Reverse
	Thermistor	•	00 00		000.0 -		00 00	Reverse
	Thermistor	•	00 00		000.0 -		00 00	Reverse
	Thermistor	•	00 00		000.0 💌	Board in alarm	00 00	Reverse
						Enable Minimum ON	OFF	
- Sensor Averaging Setu	JD							Celsius/Fahrenheit
	1 2	3	4			2 3 4		
					Γ			Celsius
Enable Sensor A	veraging							
, Litable Series A	ronagang							
					0.17			
					Send T	o Controller		<u> </u>

Next go to **Reset control** click on the output you wish to be controlled by the input. Select the input you are to use. Under **setpoint range** set the minimum and maximum temperatures wish to control over and then under **temperature range** set the maximum and minimum distance that the slide will travel (must be within your settings on the sensor input/output table). For instance if you set the range on the sensor input/output table from -5 to 5 and you set the temperature range from -2.5 to 2.5 then your setpoint range would swing from minimum to maximum in half of the sliders travel. You can also set a delay in seconds in order to restrict the speed of the action.

Holiday Schedule function

The holiday schedule is used to override the daily schedule for a point. The holiday schedule is only used for scheduling unoccupied periods. Up to 15 holiday dates may be entered for the holiday schedules. Select the points which will follow (be indexed off) for the holiday periods. Enter the Month (1-12) in the first entry box and enter the month day (1-31) in the second entry box. Repeat this for all desired holiday schedules.

Holiday Schedule		X
month day 1. 02 20 2. 04 05 3. 06 05 4. 00 00 5. 00 00 6. 00 00 7. 00 00 8. 00 00 9. 00 00 10. 00 00 11. 00 00	month day 13.00 00 14.00 00 15.00 00	Output Enable No1 fan run No 1 fan high No 2 fan run Fresh air fan Toilet ex fan Board in alarm
	Send To Contro	oller <u>E</u> xit

Press the Send to Controller Button to save.

Kwh Interval and pulse per unit

Select PROGRAM from the menu selection and choose Kw interval.

You must enter the KWH/Pulse which your utility company uses for demand calculations. If you do not know this number, contact your local utility company for this information. Fill in the selection circle for 15 or 30 minutes to match your demand period. If you are on a 30 minute demand period you may still use the 15 minute selection for quicker system shedding response.

Press the Send to Controller Button to save.

🚥 Meter Pulse Facto	rs		
No1 filt block No2 Filt block	0.000	Per Pulse Per Pulse Per Pulse Per Pulse	
Interval (All Meters) 15 minutes 30 minutes			
	Edit		<u>Updating</u>

Demand Load Shedding Function

The BASYX load shed control function is a program designed to save you energy expense. The load-shed function will monitor the current electrical usage and will turn points off when the projected usage is forecasted to exceed the demand setpoint.

Select PROGRAM from the menu selection and choose KW Shed point to enter the load shed information.

First Enter KW Shedpoint . (This is the target KW demand you do not wish to exceed) Select the points which will be shed when your current estimated usage is forecasted to exceed your entered shed point KW. Select the point by clicking on the check box next to each point. This will enable the load shed routine for these points.

Select the point priority (1-8) for each load. The priority tells the BASYX system in which order to shed the system points. Priority 1 is shed first, followed by two and so on.

Next Enter the estimated load of each priority entered. For example if you assign point three (AHU Fan) as a priority one load shed, enter the estimated KW usage for the AHU Fan under the first priority load demand. If two or more points are assigned as a priority one, add the KW estimates for each and enter under the priority one load demand.

💶 Load Shed			
- Load Shed Setup	0 Kw	– G	lobal Enable
Enable Load	d Shed Priority	Shed P	oint OffSet
🗖 No1 fan run	0	Priority 1	0
🥅 No 1 fan high	0	Priority 2	0
🔲 No 2 fan run	0	Priority 3	0
🔲 Fresh air fan	0	Priority 4	0
🔲 Toilet ex fan	0	Priority 5	0
	0	Priority 6	0
	0	Priority 7	0
🗖 Board in alarm	0	Priority 8	0
Hint: Load S	hedding works	with Meter One	e Only!
	<u>E</u> dit		Updating

Understanding PSC load shedding

The load shedding Schedule uses Meter one (Digital Input 1) to estimate the current KW usage. Meter one is the only meter that can be used for load shedding. The KW readings are estimated readings based on the current KW pulse feedback from the utility meter. This number is used to project the KW usage over the next hour. The Estimated KW Value is used by the load shedding Schedule to assist in protecting you from setting a new KW peak demand. Only the points which are enabled by the system load shedding program will be shed and therefore care should be taken to add all high electrical usage equipment to the BASYX control system. Note: A five minute delay is built in between shedding stages. This feature is to protect you from

Note: A five minute delay is built in between shedding stages. This feature is to protect you from duty cycling your equipment.

Push Button Timed Override: Analog Input

🚥 Push Button Override	_
Push Button Override Setup	Output in Process
Sensor Input 1	No1 fan run
No 1 room temp	🔿 No 1 fan high
	🔿 No 2 fan run
Override Time 120 minutes	🔿 Fresh air fan
ovende time 1120 minutes	🔿 Toilet ex fan
	0
Enable	•
C Disable	C Board in alarm
Hint: Enter Pushbutton Override da	ita for Output #0
Edit	<u>Exit</u>

The occupied status may be overridden during unoccupied periods by utilising the BASYX[®] push button timed override algorithm. This feature is set up through the setup software and will index all the assigned points to the OCCUPIED status. See the application notes on using timed overrides for systems.

Note: Pushbutton Override will not work unless Timed Overrides are enabled!!!!!

To enable the Analog Input (Push Button) Timed Override function of the BASYX[©] controller: Go to the PROGRAM MENU and select PUSHBUTTON OVERRIDE

Press the output you wish to program

The OUTPUT IN PROCESS selection circle will be filled in for the output.

Click on the ENABLE selection circle so that it is filled in with a black dot.

Click on the OVERRIDE TIME input box and enter the number of minutes you wish the system to override.

Click on the SENSOR SELECTION choice box and enter the space sensor or input number which the system will monitor for a momentary push button or short circuit. Press **Send To Controller** To Save

Displaying or Clearing a pushbutton override from the system:

To display or clear a timed override from the system, you may access the timed override screen from the STATUS menu and selecting the TIMED OVERRIDES option. Select the UPDATE button to view the time remaining for all the push button or timed overrides. To clear a timed override, select the input box next to the point you wish to change. Enter 0 to clear the override or any other number of minutes to change the remaining time in minutes for all points you wish to change. Press the SET button to download the information to the system board. Note: The push button will override any time value that has been entered into the timed overrides

input box with the programmed value which was set in the step previous.

Note: - from firmware version 0.3.6 if you push the push button override button a second time after at least 1 Min from the first push the override will be cancelled after a further 1 Min delay.

Digital Input Overrides

Note:- lead/lad is on the same screen.

Select PROGRAM from the menu selection and choose Lead Lag Control.

Enter your override time in seconds (64k max input).

Enter in your Binary Output Code this code represents the outputs you want in Occupied Mode

when a contact closure is across the specified digital input (see Chart Below).

Press the Send to Controller Button to save.

Look up Table for Binary number entry Alternate method to find code value for override

POINT	DO8	DO7	DO6	D05	DO4	DO3	DO2	DO1	Binary code
# TO ADD FOR OVERRIDE	128	64	32	16	8	4	2	1	
VALUE				1	0	1	1	1	10111
EXAMPLE				16	0	4	2	1	23

Entering 23 will override points 1,2,3 and 5 into the occupied mode

A zero indicates point is under normal control -1 indicates point is in override (occupied mode) Order is DO(8,7,6,5,4,3,2,1)

🚥 Lead Lag / Digital Inputs Override 🛛 🛛 🔀									
– Lead Lag Setup	- Digital Input Overrides								
Digital Output	Override	Binary Output							
No1 filt block 00 Lead 1	No1 filt block 60 sec.	23							
No2 Filt block 00 Lag 1	No2 Filt block 00000 sec.	000							
00 Lead 2	00000 sec.	000							
00 Lag 2	00000 sec.	000							
Cycle Days 00									
	I Enable								
Send To Controller									

Output lock Interlocking points for operational control.

Often points on a control panel are part of a larger system such as an air handler or rooftop unit. These points must operate as a system for proper mechanical operation. Good mechanical practice dictates that the units be interlocked through the relays such that the cooling circuit will not be enabled if the fan is not operational. The BASYX controller allows for you to indicate which points must operate together. An example would be a fan and heating or cooling point on an air handling unit.

To set up the interlock control, select the PROGRAM menu tab and choose the OUTPUT LOCK Selection.

Each point is listed with an entry box following. To interlock a point, enter the associated output which would need to be energised along with the current point. For example, if the fan is point number one, (DO 1) and you wish to interlock it with the heating on point two (DO2) enter a one (1) in the second box. This will force point one to the energised (on) state when ever point number 2 is called to be energised.

🚥 Output Locking	
Setup Output Locking No1 fan run 0 Toilet ex fan 1 No 1 fan high 0 No 2 fan run 0 Fresh air fan 2 Board in alarm 0 Outdoor Air Lockout Cooling Mode Above Offset © Enable Cooling Mode Above Offset © Disable Setpoint Stat Link Stat Input Number 00 0	Setpoint Link Setup 1. Cooling Setpoint 00.0 2. Heating Setpoint 00.0 Setpoint 00.0 No1 fan run 00 00.0 No 1 fan high 00 00.0 No 2 fan run 00 00.0 Fresh air fan 00 00.0 Toilet ex fan 00 00.0 Board in alarm 00 00.0
Send To Control	ler Exit

OAT change over

Heating/Cooling Mode

The heating/cooling mode of operation uses analog input number eight (AI-8) for the outside air sensor. To utilise this function, the outside air sensor must be connected to this physical point. Enter the Switch over setpoint which will toggle the system to heating mode if one degree below the given value and to cooling mode when one degree above the given value. The screen above shows the system is set to be in heating mode below 49 degrees Fahrenheit and in cooling mode at 51 degrees Fahrenheit.

The digital outputs may be assigned with the following modes of operation: **heating-** The heating control mode will only be allowed to activate (Energise) when the system is indexed to the heating mode.(Outside air below entered switch-over setpoint)

Cooling- The cooling control mode will only be allowed to activate (Energise) when the system is indexed to the cooling mode.(Outside air is above entered switch-over setpoint)

Heat/cool- This control mode will active (energise) the point when the temperature is above the entered setpoint plus the offset above and when the temperature is below the entered setpoint minus the offset below.

Automatic-This control mode will automatically switch the point control mode to heating if the system is in heating and to cooling when the system is in the cooling mode.

Disable-Ignores temperature control function. Recommended for points not utilising temperature control.

Daily Schedule Function

As an alternative to the time schedule function you may choose to use the Daily Schedule function The daily schedule is used to set up occupied periods for a point. The daily schedule will enable the occupied temperature control program to maintain the desired occupied setting. Press the Output you wish to program

The OUTPUT IN PROCESS selection circle will be filled in for the output

Enter the ON and OFF hour and minute for Monday

Repeat previous step for each day.

Press The Send To Controller Button To Save Data

Analog Output Schedules

The BASYX[©] controller is designed to maintain comfort levels during occupied periods. The comfort level is a temperature setpoint which the system will operate to maintain during the times the points are Scheduled as occupied. A control point is scheduled to the occupied mode when the time schedule for the current day has a start time less than the present system time and less than the scheduled stop time. When a system is in the occupied mode, the occupied setpoint will be used as the target temperature for the system.

The BASYX[©] controller also increases the energy efficiency of the system by allowing for reduced setpoints in the heating season or raised setpoints in the cooling season for unoccupied periods of the building. These setpoints are utilised for any point where the current time falls outside the scheduled occupied time periods.

To enable the Analog Output Control Function.

Select PROGRAM from the menu selection and choose Analog Output Setup.

Press the Output you wish to program

The OUTPUT IN PROCESS selection circle will be filled in for the output.

The control modes operate as follows and must be set up for proper operation:

Select the Input (**Sensor Input**) You Would Like to Control Press the Down Arrow For your choices.

The Normal Check Box Should Be left unchecked

Check the **Enabled/ Disabled** Check Box if the check box shows Disabled The analog output schedules will not operate.

The **Reverse/Direct** Acting Check Box works as followed. Select direct for a reset calculation that will raise the Analog RAW value percentage as the temperature measured increases or reverse which will lower Analog RAW value percentage as the temperature measured increases.

Off Position 0%- Off Position 100% - This Check Box is used when you have linked the Analog Output to a Digital output. When Digital Output is ON (Occupied) then the Analog output schedule is ON . When the Digital Output is OFF the Analog output Raw Value defaults to Either 0% (0vdc) or 100% (10vdc) which ever you choose.

Enter the setpoint or target occupied temperature for this point.

Enter the **Delay** in seconds. This is the delay between each calculation use this to either slow control or speed up control.

Enter **Gain**. The analog output position = (error X gain) + the original analog output position. A High gain can cause erratic control. A gain of one is recommended.

Output Link Allows you to turn the analog output schedule ON(Occupied) and Off via a Digital Output with a Daily Schedule.

Set the Min/max positions you want the output to control to (max position = 255)

Analog Outputs Setup		
Setpoint Setup Sensor Input 1 No 1 room temp	Setpoint 18.0 Delay 00 sec Gain 01 Output Link 1 Minimum Position 00 raw Maximum Postion 255 raw Off Position 00 raw	Output in Process No 1 cool valve No 1 Heat valve No 2 cool valve No 2 heat valve
Hint: Enter A	Analog Output data for Output #0	
Copy Enabled	Edit	<u>Updating</u>

Programming Lead Lag Schedules:

The Lead Lag schedule is most commonly used in Dual Pump configurations Digital Inputs one through four are used, allowing you to control two pump pairs. The Lead Lag Algorithm will not operate unless the Digital Outputs are in Occupied Mode. On Initial Start up of the lead pump #1, If Digital Input #1 is not ON within 30 seconds the Lag Pump #1 will be powered ON, If Digital Input #2 is not On within 30 seconds Lead pump 1 is turned ON again. The Pumps will cycle until one of the digital inputs are switched ON. By connecting the pump flow switches and thermal over loads to the digital inputs you can maintain both a lead/lag and pump back up configuration. The same for Lead Lag Pump 2.

Cycle Days automatically changes from Lead to Lag or from Lag to lead. For example if you were to enter 2 in the Cycle days text box the Pumps would cycle from lead to lag and lag to lead every 2 days.

🖴 Lead Lag / Digital Inputs Override 🛛 🔍										
Lead Lag Setup	Digital Input Overrides									
Digital Output	Override	Binary Output								
No1 filt block 01 Lead 1	No1 filt block 00000 sec.	000								
No2 Filt block 02 Lag 1	No2 Filt block 00000 sec.	000								
00 Lead 2	00000 sec.	000								
00 Lag 2	00000 sec.	000								
Cycle Days 10										
	🗖 Enable									
Send To Controller										

Temperature Averaging Setup.

Sensor Averaging allows you to Average up to 4 temperatures sensor values....The averaged value is displayed in sensor input Position 6 or 7 if do not want to use a sensor position the averaged values can read using Basyx Logic Positions:

AVG_AI6	EQU	1865
AVG_AI7	EQU	1867

;AVG ANALOG INPUT POSITION 6 ;AVG ANALOG INPUT POSITION 7

Sensor Inputs 6 or 7 must be set to Average if you want the value to be displayed on the status screen or to be used as a control input.

- 1. Set Input 6 or 7 to Average.
- 2. Under Sensor Averaging Setup Select the inputs you want to average.
- 3. Send To Controller
- 4. You are Finished

• •	Input/Output Setup									_ 🗆 🗙
	– Sensor Type Setup —			iensor			Minimun ON - OFF Setu	Mini		Reverse Action Off = 24vac
	No 1 room temp	Type Thermistor	Lov 00	High		Decimal 000.0 👻	No1 fan run		OFF 00	Reverse
	No1 airtemp	Thermistor		00	;	000.0 -	No 1 fan high			Reverse
	Slide control	Thermistor	- - 00	00	Ē	000.0 -	No 2 fan run	00	00	Reverse
	No2 room temp	Thermistor	_ _ [00	00	i — İ	000.0 -	Fresh air fan	00	00	Reverse
	No 2 air temp	Thermistor	• 00	00		000.0 💌	Toilet ex fan	00	00	Reverse
	adverage 1	Average	• 00	00		000.0 💌		00	00	Reverse
	adverage 2	Average	• 00	00		000.0 💌		00	00	Reverse
		Thermistor	• 00	00		000.0 💌	Board in alarm	00	00	Reverse
							🔲 Enable Minimum ON	OFF		
[- Sensor Averaging Setu	IP								Celsius/Fahrenheit
	1 2 3 4 1 2 3 4 adverage 1 1 2 0 0 0 0 0 Enable Sensor Averaging Enable Sensor Averaging Enable Sensor Averaging Enable Sensor Averaging Enable Sensor Averaging									Celsius
		<u> </u>								

Above Sensor Position 6 Will show the Averaged Value of Sensor Input 1 and 2. Above Sensor Position 7 Will show the Averaged Value of Sensor Input 3 and 4.

Programming Sensor Setup:

The Sensor Setup allows you to read voltage and current sensors or for example pressure sensors.

Thermistor is the standard <u>10k@77deg</u> F or 10K@25 deg C temperature sensor a Low and High value should not be entered the sensor table is preloaded in the Basyx system. Just Enter the Units DEG or C and your done.

0-10VDC is for 0 to 10vdc sensors enter in the Low and High Sensor Value then enter in the Unit type such as PSI and your Done. Please note to use this function you must change the dip switch setting for the input you are using. The dip switch are located at the edge of the BASYX PSC control board next to the Analogue inputs. When operated the dip switch turns off the 10VDC the BASYX PSC applies to each input, if you leave it on you will not read the correct value on the system.

4-20ma is for 4 to 20ma sensors you will need to acquire a 499 ohm resistor to go across the sensor input use for proper readings. Then Enter in the Low and High Sensor Value next enter in the units and your done. Please note to use this function you will need to operate the dip switch as shown above and also operate the dip switches in the next block to them. These dip switches apply a resistor across the input in question to enable them to be read as 4-20ma instead of 0-10VDC.

Virtual is to enable you to read from the corresponding input on board 1.

Average Please see averaging instruction shown on previous page.

0-400ohms to read from the slide control on the sensor, set min and max readings ie. –100 to 100 = remove 10DEG from setpoint or add 10 DEG to set point.

0-10K/0-5VDC To enable the reading of straight resistance.

Min on/off

Under the sensor set up screen you will be able to set up minimum on/off times for each digital output. This is especially useful with compressors where you may not want them to be turned of to quickly or wish them to stay off for a minimum time to prevent short cycling.

Note:- if you set both a min on and min off time the output will act as a re cycle timer.

Reverse action

To the reverse the action of a digital output go to Sensor set up screen and tick the box of the output you wish to reverse.

To reverse the out put of an analog output go to the Analog output setup screen and tick the box of the output you wish to reverse.

🖴 Input/Output Setup									
Sensor Type Setup		S	ensor			Minimun ON - OFF Setup Minutes	Reverse Action Off = 24vac		
	Туре	Low	High	Units		ON OFF			
Chill 1,2 flow	Thermistor	<u> </u>	00	Deg	000.0 💌	Chill 1 run 00 00	Reverse		
chill 1,2 ret	0-10vdc	- 00	10		000.0 💌	Chill 2 run 00 00	Reverse		
	4-20ma	• 00	20		000.0 💌	Chill 3 run 00 00	🗖 Reverse		
CHWP 1 FS	Virtual	• 00	00		000.0 💌	CWP chill 3 00 00	🗖 Reverse		
CHWP 2 FS	Average	• 00	00		000.0 💌	GFAR 00 00	Reverse		
CWP 1 FS	0-400 Ohm	• 00	100		000.0 💌	Boiler fail 00 00	Reverse		
CWP 2 FS	0-10k/0-5vdc	• 00	50		000.0 💌	Chiller fail 00 00	Reverse		
OAT	Thermistor	• 00	00		000.0 💌	FCU problem 00 00	Reverse		
	Enable Minimum ON OFF								
- Sensor Averaging Setu	ıp.						Celsius/Fahrenheit		
CWP 1	Celsius								
🔽 Enable Sensor Av									
					Send T	o Controller	<u>E</u> xit		

Global Sensors

To enable global communications and point sharing set the corresponding points to on.

To read an input from board one at any other board on the system. Set the input on the board you want to read at to virtual, the input will now display the data from the corresponding input at board 1.

Global Communication.

Enable Global Communications: This turns on the global communications program, which allows global information to be passed along the data bus (always used).

Enable Global OAT: This enables the program which allows sensors on board 1 to be read on additional boards through the virtual sensor setup (almost always used).

Enable Global KW: This program passes information obtained through the meter input on board 1 to be used for demand control on additional boards (used only for global load shedding).

Enable Global Alarms: This activates the program that looks at all boards for an alarm status, and allows board 1 to dial out through the pager program .

Enable Global Overrides: Enables Global over dire timer see Global commands in logic Variable 1054 to 1961.

VAV Time Schedules: This allows any schedule on board 1 to be sent to VAV controllers, which have a box in the setup program labeled Time Schedules (1-12).

Enable Global Time: This box activates the program which performs clock synchronization between 4-5:00am every day (same as manual command).

Board Count: Lets board 1 know how many boards to look for communication with.

Zone Address: This is for addressable repeaters for projects larger than 256 controllers.

History Mode

The history mode makes the BASYX system a very powerful stand alone controller. The history may be logged in one of three intervals. Each mode will change the number of days the system will retain and the interval in which the temperature readings are set

To set up history recording, select PROGRAM from the menu tab and choose HISTORY MODE selection. Press the Edit Button then Click on the check boxes you wish to record. Then move the days slider to the number of days you wish to record for. Finally move the interval tab to your desired setting. The bar graph shows the amount of memory you are going to use, if it says our of range ether reduce the number of days you are going to record over or increase the interval. Then Press the **Send to Controller** Button to save.

You must check the global box if you are using global. This moves the history up to a higher address to allow space for the global file. If you do not check this, your global and histories write to the same memory address, causing problems primarily with the history files.

At the bottom left of this screen there is a tick box. When you place a tick in it and press send to controller you will reset all history data. This should be done at any time you change the information displayed on the screen. If you fail to do this the history's may not work correctly.

Notes:-

 time accumulation is only possible if you first go to the board status screen and enable time accumulation. To do this first stop auto update then click on enable (bottom right) then click on reset, after which allow auto update to continue.

The recorder works on last in first out that is when you go to down load the history data and the memory has over flowed you will see only the most resent data.

🕮 History Mode Setup							
History Database Setup							
	Point Selection		Intervals				
Universal Inputs 1 🔽 2 🔽 3 🕅	4 v 5 v 6 v 7 v 8 v		60 				
kw Meters 1 🗖 2 🗖 3 🗖	4 🗖	/	10				
kwh Meters 1 🗖 2 🗖 3 🗍	4		aily Only				
kw Peak Meters 1 🔲 2 🕅 3 🕅	4 🗖		aily Only				
DI Time Accum. 1 🔽 2 🔽 3 🕅	ž 4 🔽	32	60				
DO Time Accum. 1 🔽 2 🔽 3 🕅	4 v 5 v 6 v 7 v 8 v	Lut					
	45032						
Ir History Enable Ir Global Enable							
🔽 Reset History Database	Send To Controller		<u>E</u> xit				

Graphic menu

Once within the graphic screen you can enter programming mode or Status mode. Status allows you to click on any one of the screen buttons located on the left of the screen and view the graphic within that screen.

Status Mode

Open the graphic screen by clicking on graphics. Click on one of the buttons located on the right of the screen. You will now see the graphic image with control windows on top. From here you can view any inputs and outputs placed during programming mode.

Changing data.

To change set points or time schedule data. Click on the green **edit** button at the lower right of the screen you can now change data. When finished click on **send to controller** located where the edit button was.

Programming mode

Open the graphic mode screen and click on the Program mode button click on the edit graphic button then click on edit graphic. A screen will open up, click on choose type Set up Button.

Set up Button

This is used to set up a new graphic screen. Once you have clicked on this box choose one of the graphic side bars by number, enter the name you wish to call it and enter the path to the graphic image you wish to use. *Note:- Windows Meta files work best.*

Once you have set up a side bar graphic you can place the following information windows on to it by clicking on the wording and clicking on add new. Enter the name you wish to call the button, the board number and the point it is going to get information from. Click on create label. A button will appear on the upper middle left of the screen. Place you pointer just below the button and hold down the left mouse button. You will now be able to move the button to where ever you wish on the screen.

🚟 Graphics Edit Box	
Choose Type Setup Buttons	
Select Button To Edit Velcome	
Enter Button Text Level one Enter Image Path SYX\277 William ST\lev 1 floor.wmf Browse	
Box Adjustments	
<u>S</u> ave To File <u>C</u> lo	se

Programming control boxes.

Choose the type of control box you wish to program. See following picture.

🚟 Graphics Edit Box	
Choose Type	Analog Input Box
	Analog Input Box
Select Button To Edit	Digital Output Box Analog Output Box Setpoint Box Schedule Box
Enter Name	Schedule Position Box Analog Output Setpoint Box
Board Address	
X Y	
Width Heigh	
Add New	Delete Create Label
	Save To File

Click in add new.

Enter the name you wish to call it, the input, output number or logic address and the board number. Then click on create label.

The control box will appear in the top left part of the screen.

Use you mouse to move the box to where you want it.

Click on save to file.

Continue with the above until all your control boxes are on the screen.

Modifying or fixing a graphic file.

Do not do it unless you have to then keep a copy of the original just in case.

Use the extra program "BASXY graphic file converter" to convert the file to a readable/changeable note pad file. After converting you will find a file called "graphics_converted.txt" under the same sub directory as the original graphics file. Open it with note pad, keep the total number of lines the same and do not delete any blank lines. The following rules apply

The first screen file name must be on LINE 34 of the text file....

The first of the 2 zeros must be on LINE 67 of the text file....

The number of lines in the file must be on LINE 101 of the text file.

The lines which put data on the screen must begin with increment 101, then the lines must be in

numerical order. The number of lines shown on line 101 must always be one more than the increment in the last line of the file.

If you delete any lines you must re increment the line number the location of the line number is shown in the example below line 118 shown.

1,LOGICVAR,z3 SP,2,63793,3437.5,5242.5,655,255,**118**,0,000.0

This line will put a box on the second screen "1" it will be a "LOGICVAR" called "z3 SP" from board number '2" using logic variable "63793" at location "3437.5,5242.5" the size will be "655 by255" and the decimal point will be displayed as "000.0".

Analog Input box. Used to display the data from one of the Analog inputs.

Digital input box. Used to display the data from one of the Digital inputs.

Digital output box. Used to display the data from one of the Digital outputs.

Analog output box. Used to display the data from one of the Analog outputs.

Analog output set point box. Used to display and change the set point for the four analog outputs.

Set point Box. Used to display the set point of one of the Digital outputs. This point can be changed from display mode.

Logic Variable. Used to display the contents of any memory location within the TSM150. You can also set a decimal position or make the window show ON or OFF instead of a value. Note of logic variable is Zero OFF will be displayed if Logic Variable is grater than Zero then ON will be displayed.

Schedule box. Used to display time schedules. This point can be changed from display mode. Schedule one on time = Schedule 0, Schedule one off time = schedule 1. Schedule two on time = Schedule 2, Schedule two off time = schedule 3 etc.

Schedule position box. Used to display the number located in one of the schedule number boxes in the time programming window as follows.

Meter Boxes. Used to display the metering values.

output one	1	2	3	4	output tv	vo	1	2	3	4
Monday	0	1	2	3	Monday		28	29	30	31
Tuesday	4	5	6	7	Tuesday		32	33	34	35
Wednesday	8	9	10	11	Wedneso	lay	36	37	38	39
Thursday	12	13	14	15	Thursday	y	40	41	42	43
Friday	16	17	18	19	Friday		44	45	46	47
Saturday	20	21	22	23	Saturday	1	48	49	50	51
Sunday	24	25	26	27	Sunday		52	53	54	55
					_					
output three	1	2	3		output fo	our	1	2	3	4
Monday	56	57	58		Monday		84	85	86	87
Tuesday	60	61	62		Tuesday		88	89	90	91
Wednesday	64	65	66		Wedneso		92	93	94	95
Thursday	68	69	70		Thursday	y	96	97	98	99
Friday	72	73	74		Friday		100	101	102	103
Saturday	76	77	78		Saturday	1	104	105	106	107
Sunday	80	81	82	83	Sunday		108	109	110	111
output five	1	2	3		output si	x	1	2	3	4
Monday	112	113	114		Monday		140	141	142	143
Tuesday	116	117	118	-	Tuesday		144	145	146	147
Wednesday	120	121	122		Wedneso		148	149	150	151
Thursday	124	125	126		Thursday	y	152	153	154	155
Friday	128	129	130		Friday		156	157	158	159
Saturday	132	133	134		Saturday	1	160	161	162	163
Sunday	136	137	138	139	Sunday		164	165	166	167
output seven	1	2	3		output ei	ght	1	2	3	4
Monday	168	169	170		Monday		196	197	198	199
Tuesday	172	173	174		Tuesday		200	201	202	203
Wednesday	176	177	178		Wedneso	-	204	205	206	207
Thursday	180	181	182		Thursday	y	208	209	210	211
Friday	184	185	186	-	Friday		212	213	214	215
Saturday	188	189	190		Saturday	1	216	217	218	219
Sunday	192	193	194	195	Sunday		220	221	222	223
Meter boxes	DI		12	DI3	DI4					
Kuda										
Kwh	1		2	3	4					
Kw	5	(6	7	8					

12

16

10

14

11

15

9

13

Kw peak

Kw peak time

History menu

Retrieving the History Data

The history data makes the BASYX system a very powerful stand alone controller. The history may be retrieved in 10 ways. Each mode will change which data the system will retain in the comma separated file (csv).

Click the data you wish to receive then enter the Start Date and End Date.

Choose to retrieve data from one board or all boards.

Next, Press the Retrieve Data Button

A dialog box will open select the Folder you would like to keep the File data in then enter a file name.

Remember Basyx Program will automatically add the .csv extension just enter in the file name example: test . After the file name is entered Press the open button.

🚥 Retrieve History Data	
History Selections	
🔽 Kwh Meter 1	🔽 Kw Peak Meter 1
🔽 Kwh Meter 2	🔽 Kw Peak Meter 2
🔽 Kwh Meter 3	🔽 Kw Peak Meter 3
🔽 Kwh Meter 4	🔽 Kw Peak Meter 4
🔽 KW Meter 1	Analog Inputs (1-8)
🔽 I/O Runtimes	
System Setup	
Retrys 02	Month Day
C Retrieve Data All Boards	Start Date 02 10
 Retrieve Data From One Board 	End Date 03 20
Sub-Metering	
History Data Status	
Status	3
Record Count	
Wait Cycles	
<u>Cancel</u> <u>R</u> etrieve D	ata <u>E</u> xit
,	

Communications menu

Connecting to Basyx

When Communicating via Modem a setup string must be entered or use the Default string. Next Enter the communication port your modem is setup on. Then Press the Modem Connect Button. Remember the Basyx Program will not let you connect unless the current system name and system file name match. If you have trouble communication just try a different Modem type. When communicating via Direct Connect enter the communications port the Basyx system is connected to then press the Direct connect button.

Once communication is established you can exit the communications menu and view the system. **Note**: when connecting the program looks for the first board in the list and will fail to start if it cannot be found. If you need to connect to a system where board one is not on line go to <file> <edit job> double clock on your job, click on an active board file and add 00 to the start of the name. Exit the program and restart. The program will now look for that board file instead of board one.

Communications	
Direct Port Delay Modern Port Delay Modern Type	Setup String
System Name 277 William ST Baudrate 2400 Phone # IP Address Port C:\PROGRAM FILES\TRIANGLE MICROSYSTEMS\BASYX\277 William ST Save	277 William ST 277 William ST office system Scala testing boards Testing rig TMS100 LCe System

Restore System Data

Use the restore system data window when the Basyx system database becomes corrupt choose the data that needs to be restored and press the Restore system Data Button. Note with a few minutes of communicating with a system the PSC boards will send data to the PC. If you wish to up load data to the PSC system do so as soon as you establish communication.

Send File Data To Controller	
Selections	
☑ Time Schedules	🔽 Kwh / Loadshedding
Foliday Schedules	Pushbutton Overrides
Setpoint Occupied	🔽 Output Lock,Setpoint Link
Reset , Analog Outputs ,	LeadLag Control
🔽 Analog Input Alarms	🔽 History , Global IO
Daily Schedules	🔽 Sensor Setup
Point Assignments	🗖 Clear All
	System Board Count:
O All Board Files	 Current Board File
	i i i i i i i i i i i i i i i i i i i
<u>Cancel</u>	e System Data Exit

Alarm menu

The BASYX[©] controller allows for eight different alarm levels to be monitored and alarmed. Occurrence of any alarm will cause the designated alarm output to be turned ON during the period the alarm is active. The designated output may be connected to an automatic dialer for notification of alarms during unoccupied hours or to a point enabling the building lights for security purposes.

To enable the Temperature Alarm function

select ALARM from the menu selection and choose ALARM DIAL OUT from the options.

🚥 Alarms	
Analog Input Alarms Settings Universal Inputs 0 Alarm Output 3 Zero Chill 3 run Alarm Above Setpoint Alarm Below Sepoint Setpoint 00.0 Disable Individual Alarms Alarm Enable Enable Local Alarms Enable Global Alarms Disable Reset Alarm	Alarm in Process Alarm DialOut Settings Image: Alarm 1 Image: Alarm 2 Image: Alarm 3 Image: Alarm 4 Image: Alarm 4 Image: Alarm 5 Image: Alarm 6 Image: Alarm 7 Image: Alarm 8 Image: Alarm 5 Image: Alarm 7 Image: Alarm 6 Image: Alarm 8 Image: Alarm 6
Copy Disabled	Edit Exit

Press the edit button.

Select one of the alarm in progress buttons. Press the Output you would like to program. Select the input you wish to examine. Select alarm above or below set point and enter the set point. Select ether enable local or global alarms. Press the send to controller button.

To enable digital input/digital output alarms.

select ALARM from the menu selection and choose DIGITAL INPUT/OUTPUT ALARMS from the options.

🚥 Alarms	
Digital Input / Digital Output Alarms	Alarm Number
Digital Input Digital Output Alarm Action Chill 1 fail I ON I Disable I OFF I Chiller fail I ON I	
Alarm Delay 600 🔽 Enable Alarm Clear Alarms	Alarm Number
Digital Output / Temperature Setpoint Alarms	Alarm 1
Digital Output Analog Input / Mode Alarm Action Chill 1 run Image: CHWP 1 FS Below Chiller fail Image: ON Image: CHWP 1 FS Image: Chiller fail Image: ON Image: CHiller fail Image: Chiller fail <td< td=""><td></td></td<>	
Alarm Delay 600 Alarm Setpoint 30.0 🔽 Enable Alarm Clear Alarms	
Edit	<u>Updating</u>

Press the edit button. Select one of the alarm numbers on the right of the screen. Enter the Digital input and whether on or off you wish to monitor. Select the input you wish to examine. Select output you wish to examine against and whether on/off. Select the alarm out put and action. Enter and alarm delay you need in seconds. Tick the enable alarm button. Press the send to controller button. Repeat for any other alarms you need.

To enable digital input/analog input alarms.

select ALARM from the menu selection and choose DIGITAL INPUT/OUTPUT ALARMS from the options.

Alarms Digital Input / Digital Cutput Alarms			Alarm Numbe	- - ×
Digital Input Chill 1 fail GON Chill 1 fail GON Chill 1 fail Chill 1 f		Alarm Action Chiller fail I ON	r Alarms Alarm Num Alarm 1	per 💌
Digital Output Chill 1 run 💌 DN 💌 Alarm Delay 600	Analog Input / Mode CHWP 1 FS 💌 Below 💌 Alarm Setpoint 30.0		r Alarms	
	Edit		Updating	

Press the edit button.

Select one of the alarm numbers on the right of the screen.

Note if you have already programmed DI/DO alarms you can use the same alarm number to add DO/AI alarms.

Enter the Digital output and whether on or off you wish to monitor.

Select analog input you wish to examine against and whether above or below.

Enter the alarm set point.

Select the alarm out put and action.

Enter and alarm delay you need in seconds.

Tick the enable alarm button.

Press the send to controller button.

Repeat for any other alarms you need.

Note 1: Both the DI/DO and the DO/AI alarms operate like an IF/AND/THEN statement "if digital input one is on **and** digital out put one is on **then** turn digital output two on".

Note 2: If you enter only one value in the left hand side of the DI/DO alarm set such entering "digital input one on" and then set an alarm out put, the alarm output will come on whenever the digital input is on.

Alarm system status

select ALARM from the menu selection and choose ALARM SYSTEM STATUS from the options.

Alarm Description	Board Name	Address	Alarm #	Alarm State	Time Stamp	Acknowledg
1 Filter one	Level 1 North East	4	1	OK	????	
2 Filter two	Level 1 North East	4	2	OK	????	
3 Filter one	Level 1 North West	5	1	????	????	
4 Filter two	Level 1 North West	5	2	????	????	
5 Filter one	Level 1 South West	6	1	????	????	
6 Filter two	Level 1 South West	6	2	????	????	
7 Filter one	Level 1 South East	7	1	????	????	
8 Filter two	Level 1 South East	7	2	????	????	
9 Filter one	Level 2 North East	8	1	????	????	
10 Filter two	Level 2 North East	8	2	????	????	
11 Filter one	Level 2 North West	9	1	????	????	
12 Filter two	Level 2 North West	9	2	????	????	
13 Filter one	Level 2 South West	10	1	????	????	
14 Filter two	Level 2 South West	10	2	????	????	
15 Filter one	Level 2 South East	11	1	????	????	
16 Filter two	Level 2 South East	11	2	????	????	
17 Filter 1	Level 3 North East	12	1	????	????	
Add Alam	Edit	1				

Press edit.

Press add alarm, a new row will be added.

Enter a descriptive name for your alarm.

Enter a name of your choosing for the board.

Enter the board number the alarm is generated from.

Enter the alarm number you programmed in the previous section (1 TO 8).

When the alarm is raised the alarm state column will show the word "alarm" and the time stamp will be applied by the system. after the alarm is cleared you must click on the acknowledge button to cancel it.

When an alarm is raised any ware in your system you will see the red word "alarm" in the bottom right corner of the main screen.

al	Digital Input	Digital Output	Alarm Actio	•	
Alarm I	Delay 00 🔽 En	able Alarm		Clear Alarms	Alam Number
ani Gu	lpvz / Temperature Selpo	rk Algeres			Alarm 1 💌
	Digital Output	Analog Input / Mode	Alarm Action	n	
•	• ON •	INVENSYS VA . Above	• 6 • ON	•	
Alarm I	Delay 00	Alam Setpoint 1.0	🔽 Enable Alarm	Clear Alama	

Note:- When placing a number in the "alarm#" box the alarms shown in the top boxes on the above screen are 1 to 8 the alarms in the bottom boxes are alarms 9 to 16.

Universal Inputs B Alam Output 1 8 Alam Above Setpoint Alam Below Sepoint Chable Individual Alams Alam Enable Chable Global Alams Global Alams Bibbal Alams Reset Alam	Every 1 Enter Pager Code (Up to 40 digita) Alarm 8 Alarm 8 Alarm 8 Alarm 7 Alarm 8 Alarm 8
---	--

The alarms on this screen are numbered 17 to 24

Advanced programming structure.

Debug program

Changing or viewing one point

By pressing Alt D you can enter the debug mode. From here you are able to change or view the points separately. For example, view contents of AO3.

Enter 1715 in to memory location and enter 1 in data packet. Example of data received will be.

5*2*57*1*116*184*3*

command structure:

5 = start of packet, 2 = board address, 57 = packet command, 1 = packet length

116 = is data, 184 = checksum, 3 = end of packet.

You can also place data in to the memory locations by entering the memory location in the memory location box and entering the data in to the data packet window then click on the send data box.

🚥 Debug					_ 🗆 🗵
INC DEC		ss in Decimal 60123 ngth 100 max 10	 Receive Data Send Data 	2	
Data Rec	eived in Decimal				
5*1*57*10*	32×32×32×66×111×105	5*108*101*114*32*41*3*			
Send Lir	nen n Things Setup	Get Data From Cont	roller	<u>E</u> xi	:

Logic programming

Note

The logic variable chart is supplied at the end of this Manual.

Program compiling

First Open Basyx Software Click Centre of Screen. Now Press the **ALT** and **L** key at the same time.

The Basyx Logic Program Should Appear, If Not Go to Step 1

🚥 Basyx Logic	
Compiler Options	Edit Program Clear Program Compile Program T Extended Mode
	Clear Global Compile Global Exit

To Load a Logic Program first press the CLEAR button to remove any previous file next Press the **Compile Program** Button.

Now Select Your Logic Program (must be a .txt file) then Press the **Open** Button.

Open File	? ×	Basyx Logic	_ 🗆 🗙
Look jn: Basyx Logic Programs PULSE_OUTPUT.txt Valve Enable.Txt		Complet Options IF VAR 850 -= 30 AND VAR 850 -= 35 THEN VAR 176 = 24 ELS VAR 176 = 0 IF VAR 25 = 3 AND VAR 30 = 0 THEN VAR 1 = 1 ELSE VAR 1=0 IF VAR 1 = 1 AND VAR 650 -= 5 THEN VAR 204 = 24 ELSE VAR 204 = 0 9650-311-30-6-9650-411-35-91-70-11-24-91 70-11-0 9650-311-30-6-9650-411-35-91-70-11-24-91 70-11-0 9650-311-30-6-9650-411-35-91-170-11-10 9650-311-30-6-9650-411-35-91-170-11-10 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-9650-411-35-91-170-11-170 9750-311-30-6-90-30-30-30-30-30-30-30-30-30-30-30-30-30	Edit Program Clear Program Compile Program
File game: PULSE_OUTPUT.txt Files of type: TMS 100(*.txt) C Open as gead-only	Dpen Cancel		Ewit

Your Program Will Compile and Then Down Load To the PSC Board.

Assembling a Logic file.

Important. To be able to understand Logic programming you will need have experience in computer programming languages. If you do not have these skills please contact you GCS supplier to manufacture the file for you. When using Logic programming be aware you will be directly affecting the GCS CPU contents if done incorrectly this can disrupt the existing pre-programmed routines. Do not under any circumstances try to affect other logic point than the one's shown in the logic table.

You write your logic file in Windows note pad. The following commands are recognised by the system. IF, THEN, ELSE, AND, OR, VAR. And symbols < > = Each line must consist of an argument (real or dummy) and an end of line command which is the symbol; After the end of line symbol you may choose to add comments these will be ignored by the

system. SO a line may take the following format.

IF VAR 786 > 220 THEN VAR 768 = 1; Place comments here.

The line above states if Analogue input 1 is higher than 22 Deg then Place digital output 1 into Manual on. Note you ignore decimal points when programming in logic.

In order to make your logic program easier to read you can place the program in CAPS and the comments in lower case you may also choose to add Tabs to your comments line.

The word "VAR" must proceed any logic location and each word or number must have one space between. All statements must start with the word "IF" and contain the word "THEN".

If you wish to maintain a logic location at a given value you may choose to use a dummy argument.

IF VAR 31 > 0 THEN VAR 64781 = 1; Southern day light savings

In the above statement VAR 31 is the day of the month so will always be a number greater than zero VAR 64781 makes the BASYX PSC use the southern hemisphere day light savings routine instead of the northern hemisphere routine.

Basic Australian logic for all boards.

Following is a basic logic file used in Australia. IF VAR 850 > 0 THEN VAR 1934 = 1; IF VAR 850 > 0 THEN VAR 64781 = 1; IF VAR 850 > 0 THEN VAR 776 = 1; IF VAR 850 > 0 THEN VAR 767 = 1; IF VAR 61056 = 1 THEN VAR 61054 = 0; IF VAR 61056 = 1 THEN VAR 61025 = 1; IF VAR 850 > 0 THEN VAR 721 = 1;

turn on daylight savings change over enable day light savings enable time over ride enable man control disable set point offsets disable set point linking set to Centigrade

Maths.

In order to perform a math routine you need to do the following.

Adding numbers together.

A number in VAR 64039 will be added to a number in VAR 64041 the result will be in VAR 64043

IF VAR 130 = 1 THEN VAR 64039 = VAR 1711;	move AI 1 to maths
IF VAR 130 = 1 THEN VAR 64039 = 10;	add 1 deg to AI1
IF VAR 130 = 1 THEN VAR 63767 = VAR 64043;	move answer to user variable
IF VAR 130 = 0 THEN VAR 63767 = 0;	reset user variable

In the above example if digital input 1 is on then the math routine will add 1 deg to the Analogue input 1 value and place the answer in to user variable 63767 when digital input 1 is off the user variable will reset to zero.

Minus numbers.

A number in VAR 64045 will have the number in VAR 64047 removed from it the result will be in VAR 64049

IF VAR 131 = 1 THEN VAR 64045 = VAR 1711;move AI 1 to mathsIF VAR 131 = 1 THEN VAR 64047 = 10;minus 1 deg from AI1IF VAR 131 = 1 THEN VAR 63769 = VAR 64049;move answer to user variableIF VAR 131 = 0 THEN VAR 63769 = 0;reset user variable

In the above example if digital input 2 is on the math routine will remove 1 deg from analogue input 1 value and place the answer in user variable 63769. When digital input 2 is off the user variable will reset.

The math VAR locations for multiply and divide can be found in the logic variable chart.

User Variables.

User Variables are memory locations that you can use as you wish to store and manipulate data. These are VAR 63767 through to VAR 63863 they are 2 byte values only place data in the odd numbers. If you require more user variables you can choose to turn history recording off and also use VAR 10074 to 14074 use even numbers only. Normally a Logic file can only be 100 lines long but with histories disabled you may produce a much longer program you must however tick the "extended logic" box when you down load the program to the BASYX PSC.

High signal select. First enable global alarms.

This enables you to keep a count of how many boards require heating or cooling so you can decide when you require the boiler or chiller to operate.

The VAR used are. VAR 64079 high signal counter 1 at board 1 VAR 64081 high signal counter 2 at board 1 VAR 64076 high signal 1 at slave board VAR 64077 high signal 2 at slave board

Assuming Digital output 2 on each board is used for the heat valve and digital output 3 is used for the cool valve. Here is an example of the logic program used in each board numbered 2 upwards.

IF VAR 714 = 1 THEN VAR 64076 = 1 ELSE VAR 64076 = 0; set counter 1 IF VAR 715 = 1 THEN VAR 64077 = 1 ELSE VAR 64077 = 0; set counter 2

At board 1 assume digital output 1 starts the boiler and digital output 2 starts the chiller the program is as follows.

IF VAR 64079 > 4 THEN VAR 768 = 2;set DO1 to autoIF VAR 64079 < 2 THEN VAR 768 = 0;reset DO1 to manual offIF VAR 64081 > 4 THEN VAR 769 = 2;set DO2 to autoIF VAR 64081 < 2 THEN VAR 769 = 0;reset DO2 to manual off

This will cause the output in question to go on if more than 4 boards call for boiler/chiller and off again if less than 2 call.

PSC auto reset

Variable 63865 enables the automatic soft reset function, which is similar to pressing the reset button on the board. Variable 63866 sets the hourly cycle for this to happen from the point at which you enable 63865. For example, if you have a system that seems to lock up for some reason, you could enable Variable 63865 at 1:00am and disable it at 5:00am and if you set 63866 to 1 it would reset the board every hour during that period - It is not based on the clock, but rather every hour from the point that the enable variable is set.

Timers. Enable by setting VAR 61056 TO 1

20 count down timers are included in the logic programming instructions they will always try to count to zero unless you keep them at a higher value.

Example.

IF VAR 31 > 0 THEN VAR 64056 = 1;	enable timers
IF VAR 714 = 1 THEN VAR 63999 = 500:	set timer 1
IF VAR 63999 > 10 THEN VAR 771 = 1;	set DO4 on
IF VAR 63999 = 0 THEN VAR 771 = 0;	reset DO4

In the above logic file if Digital output 2 is on the timer will be held at 500 (seconds) when digital output 2 is off the timer will count down until it reaches zero, when it does digital output 4 will go off. This behaves as a delay off timer for digital output 4.

Global logic.

You can also choose to form a global logic file. This file allows you to send any data to and from board 1 to any other board. Note to send data from say board 4 to board 6 you would have to send it via board 1 as follows.

In the following example we will move data from board 4 to board 6 the VAR we will move is User VAR 63767.

4,18,63767,63767

Please note you can not add comments with this form of logic. The above statement will move data from board 4 VAR 63767 to board 1 VAR 63767

6,2,63767,63767

The above statement will move data from board 1 VAR 63767 to board 6 VAR 63767

When uploading this logic file to board 1 first "clear global" then "compile global"

Example of broadcast Variable.

255,2,1711,1711

The broadcast variable sends contents of variable XXXX to all boards. The boards are constantly looking for this address (255) and will retrieve the value immediately, rather than waiting in order when done board by board. In the example shown above the contents of Variable 1711 at board 1 will be send to Variable 1711 at all other boards. This is very good for functions that require immediate operation by the boards.

Logic notes

- 1) logic files can be up to 100 lines long when histories are used.
- 2) If histories are disabled you can assemble logic files up to 1000 lines long. This the same for both standard logic and global logic files. In order for this to work you must disable histories in the board first by clicking on the "global enable" box in the history set up screen. Next when you are loading the file make sure you click on "extended mode" before clicking on "Compile program".
- 3) when using a GLOBAL file on board 1, you must check the box on the history setup screen which tells the system you are using a global file. This moves the history memory location to allow room for the global file. If you use the extended logic control you can not use history on board 1.

Appendix A Notes

Special requirements for board one.

Input 8 must be the OAT sensor.

If you back wire an output to an input on board one you can use that input to set a global time schedule, by making all boards look at that input for daily schedules.

Board name change

To change the board names to the required one's use the format (*name_2.GCS*) for board 2. If you need a system of boards to look for another board on start up instead of board 1 go to the file manager and add a leading letter A or zero to the front of the board file you wish to start up with.

Logic down loading

When down loading logic files make sure you clear any previous file first otherwise errors can be caused both to the logic file and to other set points.

Resetting board memory.

To reset board memory do the following..

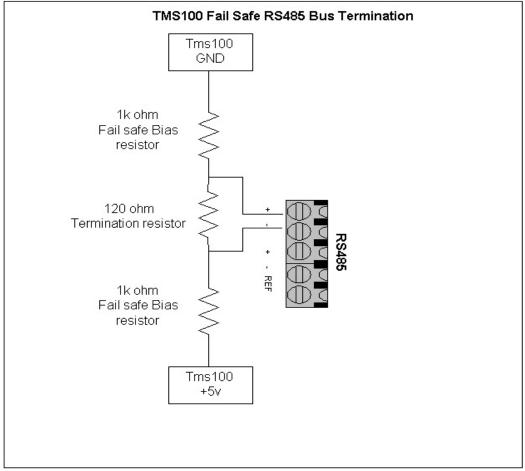
- Record settings on the board dip switches.
- Turn board off.
- Put all dip switches on .
- Turn board on .
- wait until the red light flashes.
- Turn board off.
- Change the dip switches back to original settings.
- Turn board on. The board is now ready to accept a new program.

Appendix B

Start up check list.

Pre start, Examine the boards for

- 1. All wiring connected to the correct points and no stray wire strands shorting out to the adjacent points.
- 2. Dip switches set correctly (note communication will be erratic or not work at all if 2 or more boards have the same binary number).
- 3. Fuses installed.
- 4. Any add on boards correctly connected.
- 5. Fail safe termination installed.


Connect power to board.

- 1. Make sure the green light is on steady and the red light is flashing. If not reset the board.
- 2. Look at the board file on the PC to see if it is getting information from the board.
- 3. Examine the board file to see if all your wired inputs are showing the correct data.
- 4. Set the on board time clock to the correct setting.
- 5. Enter programming instructions.

Resetting a board

Set all dip switches to on press the reset button then power up the board for a few seconds, power down and change the dip switches back to there correct settings.

PSC Fail safe bus termination.

Appendix D

Update register.

PSC Firmware update revisions. Version 0.3.6 Added high signal select. Version 0.3.7 Changed communication from board direct to PC from 2400 to 9600 Baud Version 0.3.8 Added DO status points 64631 64638 Version 0.3.9 Beta version greatly increased global command communication speed. Min value can now be greater than Max value in set up screen. Added 0-10V span setup so min value can be greater than max. Version 0.4.0 Global speed decrease. Version 0.4.1 Removed alarm dial out RS484 Baud rate adjustable added Removed floating point control. BASYX PSC firmware update revisions. Version 1.0.4. Added 0-10V span setup. Version 1.0.5 Decrease global speed (causing coms error) Version1.0.6.

Push button reset added. Upgrade speeds Bus speed to 56600 direct connect to 19200

Software update revisions.

Version 1.9.36

Added 2000 user variables when histories turned off.

1.9.39

extended logic files when histories turned off.

1.9.40

Fix up for ASC100 meter reading

Appendix E BASYX PSC requirements and notes.

The DIP switches located on the board are set as follows:

1. The row closest to the edge of the board controls the 10vdc excitation voltage for the analog inputs. This switch should always be ON except when using a low impedance self-powered voltage sensor i.e.: current sensors, etc. We have only seen a couple of instances where this would be the case.

2. The inner row of switches controls the 499 ohm resistor required for a 4-20ma input. This switch should remain OFF unless using a 4-20ma input.

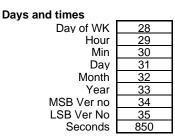
Power supply modification.

The older BASYX PSC boards are full wave rectification power supples while this is a good thing it is not fully compatible with 0-10VDC and 4ma to 20ma input sensors that are half wave types (3 wire). To make the BASYX PSC compatible you need to change it to a half wave board. To do this turn the board upside down locate the 2 power supply diodes they are black and are located just below the GOWANDA unit they are directly connected to the power supply pins L1 and L2. Remove the diodes from the board then solder in a link across the diode that was connected to terminal L2. the BASYX PSC is now a half wave board and is compatible with 3 wire input devices.

Note a BASYX PSC half wave board will not talk to a full wave board or PSC's

RS484 communications.

Install 120 Ohms resister across + to _ on last board in line


Connection a PC to board 1 stops global communications, connect instead to another board. If the PC is a long way from the boards use a USB to RS484 converter at the PC then use a RS484 to RS232 at the board end of the cable. Do not connect directly in to the RS484 loop as this can cause data corruption.

Appendix F Fault finding.

Problem	Solution
RS484 communication loss	Install fail safe termination. This is particularly important on long cable runs. Look for open or closed circuit, one faulty board can stop all so connect boards one by one to the loop.
	Note a BASYX PSC half wave board will not talk to a full wave board or PSC's
Unusual voltages showing up on communication cables.	This can cause boards to be damaged. Possible cause is when several transformers are used on the same project. Floating voltages can be up to line voltage with respect to ground and the difference can show on RS484 loop. To fix this earth one side of all transformers making sure it is the same side. Also with rev3 boards using the ref terminals will compensate.
AO not working or not seeing the correct voltage.	Ensure that the device you are controlling and the GCS board are both referenced to the same common. If not 24VAC can be passed from the device back to the GCS board causing damage to the AO card and possible communication and control problems with the other parts of the board. <i>Hint on many devices</i> $G=24V$ active $GO=24V$ common $Y = control voltage (0-10V or 4-20ma)$
Data corruption	 Although many causes can be attributable to this the main 2 to look out for are. 1) Soft ware caused, ensure you delete a logic file before installing a new or modified version as it may place it in different memory locations causing confusion with the original. 2) Voltage caused, Motor or contactor switching may cause a voltage spike. Install MOV's or .1uf caps over outputs and power supply input to the board.

PSC/150 logic variable chart

Time

L1

174

175

Day light savings on set 1934 = 0 BASYX PSC USA day light savings set 64781 to 0 BASYX PSC Australian day light savings set 64781 to 1 BASYX PSC Europe day light savings set 64781 to 2

PSC Southern Hemisphere day light savings set 64801 to 1

L7

342

343

L8

370

371

Hours on and off times

Mon Hr on

Mon min on

Mon

Time Schedules enable 1397 L4 L2 L3 L5 L6 <u>258</u> 259 <u>286</u> 287 314 315 202 <u>230</u> 231 203

Mon hr off	176	204	232	260	288	316	344	372
Mon Min off	177	205	233	261	289	317	345	373
Tue Hr on	178	206	234	262	290	318	346	374
Tue min on	179	207	235	263	291	319	347	375
Tue hr off	180	208	236	264	292	320	348	376
Tue Min off	181	209	237	265	293	321	349	377
Wed Hr on	182	210	238	266	294	322	350	378
Wed min on	183	211	239	267	295	323	351	379
Wed hr off	184	212	240	268	296	324	352	380
Wed Min off	185	213	241	269	297	325	353	381
Thr Hr on	186	214	242	270	298	326	354	382
Thr min on	187	215	243	271	299	327	355	383
Thr hr off	188	216	244	272	300	328	356	384
Thr Min off	189	217	245	273	301	329	357	385
Fri Hr on	190	218	246	274	302	330	358	386
Fri min on	191	219	247	275	303	331	359	387
Fri hr off	192	220	248	276	304	332	360	388
Fri Min off	193	221	249	277	305	333	361	389
Sat Hr on	194	222	250	278	306	334	362	390
Sat min on	195	223	251	279	307	335	363	391
Sat Hr off	196	224	252	280	308	336	364	392
Sat min off	197	225	253	281	309	337	365	393
Sun Hr on	198	226	254	282	310	338	366	394
Sun min on	199	227	255	283	311	339	367	395
Sun Hr off	200	228	256	284	312	340	368	396
Sun min off	201	229	257	285	313	341	369	397

Schedule position boxes

Enable time schedules Variable 1397

Code controls 2 position boxes place a number 1 to 15 will put a number in pos box 2 by placing a number in the box 20 will put a 1 in box 1 and a 4 in box 2

) placing a m	L1	L2	L3	L4	L5	L6	L7	L8
Mon 1.2	1398	1412	1426	1440	1454	1468	1482	1496
Mon 3,4	1399	1413	1427	1441	1455	1469	1483	1497
Tues 1,2	1400	1414	1428	1442	1456	1470	1484	1498
Tues 3,4	1401	1415	1429	1443	1457	1471	1485	1499
Wed 1,2	1402	1416	1430	1444	1458	1472	1486	1500
Wed 3,4	1403	1417	1431	1445	1459	1473	1487	1501
Thur 1,2	1404	1418	1432	1446	1460	1474	1488	1502
Thur 3,4	1405	1419	1433	1447	1461	1475	1489	1503
Fri 1,2	1406	1420	1434	1448	1462	1476	1490	1504
Fri 3,4	1407	1421	1435	1449	1463	1477	1491	1505
Sat 1,2	1408	1422	1436	1450	1464	1478	1492	1506
Sat 3,4	1409	1423	1437	1451	1465	1479	1493	1507
Sun 1,2	1410	1424	1438	1452	1466	1480	1494	1508
Sun 3,4	1411	1425	1439	1453	1467	1481	1495	1509

	1	2	3	4	5	6	7	8
Hr on	1510	1514	1518	1522	1526	1530	1534	1538
Min on	1511	1515	1519	1523	1527	1531	1535	1539
Hr off	1512	1516	1520	1524	1528	1532	1536	1540
Min off	1513	1517	1521	1525	1529	1533	1537	1541
	9	10	11	12	_			
Hr on	1542	1546	1550	1554				
Min on	1543	1547	1551	1555				
Hr off	1544	1548	1552	1556				
Min off	1545	1549	1553	1557				

Timers you can read and write to both high & low bytes

	MSB	LSB
1	63999	64000
2	64001	64002
3	64003	64004
4	64005	64006
5	64007	64008
6	64009	64010
7	64011	64012
8	64013	64014
9	64015	64016
10	64017	64018

Enable timers 61056. 1 sec per digit on low byte

	MSB	LSB
11	64019	64020
12	64021	64022
13	64023	64024
14	64025	64026
15	64027	64028
16	64029	64030
17	64031	64032
18	64033	64034
19	64035	64036
20	64037	64038

DI4 1267 1268

Digital inputs

Digital input positions

Digital input p	ositions		l I	1				
		on/off	MSB	LSB	_	Digital	input time o	ver ride
Never write	DI1	130	134	135		DI1	DI2	DI3
to DI low	DI2	131	136	137	LOW	1258	1261	1264
	DI3	132	138	139	HIGH	1259	1262	1265
byte	DI4	133	140	141				

.

Digital input time accumulation

	Min				
DI1	1663	1662	1661		
DI2	1666	1665	1664		
DI3	1669	1668	1667		
DI4	1672	1671	1670		

Reset KW data Base					
KWH	726	727			
KW	736	737			
KWP	847	848			

757

75

ALL

Pulse per meter

	MSB	LSB		MSB	LSB
DI1	445	446	DI3	1377	1378
DI2	1375	1376	DI4	1379	1380

. . .

Binary	code	for	DI	over	ride
--------	------	-----	----	------	------

Example to switch DO3 & DO6= 4+32 = 36 enter 36 into box								
DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8	
1	2	4	8	16	32	64	128	

Analog inputs

Average positions

AI6,1	AI6,2	Al6,3	AI6,4	AI7,1	AI7,2	AI7,3	AI7,4
1701	1702	1703	1704	1705	1706	1707	1708
Universal i							

AI positions

•	AI1	AI2	AI3	Al4	AI5	Al6	AI7	AI8			
LSB	1711	1713	1715	1717	1719	1721	1723	1725			
MSB	1712	1714	1716	1718	1720	1722	1724	1726			
AI fast	1727	1729	1731	1733	1735	1737	1739	1784			
	If above VAR > 150 then ON if VAR < 100 then OFF										
Virtual	1759	1761	1763	1765	1767	1769	1771	1773			

You can read Virtual data within logic files without attaching it to an input providing global is enabled. This will allow you to have all 8 AI used locally but still be able to use global outside air temperature etc at the board.

Digital outputs

Digital output positions. Enable Man on 767

Timed override enable 776. DI read/write 0=off 1=on 2=auto

Fimed override enable	<i>E 11</i> 0. DITEA		1 1-011 2-001	0				
	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8
Read only	713	714	715	716	717	718	719	720
R+W	768	769	770	771	772	773	774	775
time in min	777	778	779	780	781	782	783	784
ush button over ride	enable 785							
	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8
Sensor	786	788	790	792	794	796	798	800
time	787	789	791	793	795	797	799	801
Over ride timers	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8
Hi byte	858	860	862	864	866	868	870	872
Low byte	859	861	863	865	867	869	871	873
Min on/off	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8
Enable ON	1617	1619	1621	1623	1625	1627	1629	1631
1616 OFF	1618	1620	1622	1624	1626	1628	1630	1632
	,	,	,			DOG		009
Set point control Mod	DO1	DO2	DO3	DO4	DO5	DO6	D07	D08
Set point control Mod Mode	DO1 1775	DO2 1781	DO3 1787	DO4 1793	DO5 1799	1805	1811	1817
Set point control Mod Mode Sensor	DO1 1775 1776	DO2 1781 1782	DO3 1787 1788	DO4 1793 1794	DO5 1799 1800	1805 1806	1811 1812	<u>1817</u> 1818
Set point control Mod Mode Sensor Set point	DO1 1775 1776 1777	DO2 1781 1782 1783	DO3 1787 1788 1789	DO4 1793 1794 1795	DO5 1799 1800 1801	1805 1806 1807	1811 1812 1813	1817 1818 1819
Set point control Mod Mode Sensor Set point DB on	DO1 1775 1776 1777 1779	DO2 1781 1782 1783 1785	DO3 1787 1788 1789 1791	DO4 1793 1794 1795 1797	DO5 1799 1800 1801 1803	1805 1806 1807 1809	1811 1812 1813 1815	1817 1818 1819 1821
Set point control Mod Mode Sensor Set point DB on DB off	DO1 1775 1776 1777 1779 1780	DO2 1781 1782 1783 1785 1785 1786	DO3 1787 1788 1789 1791 1792	DO4 1793 1794 1795 1797 1798	DO5 1799 1800 1801 1803 1804	1805 1806 1807 1809 1810	1811 1812 1813 1815 1816	1817 1818 1819 1821 1822
Set point control Mod Mode Sensor Set point DB on DB off Set back C	DO1 1775 1776 1777 1779 1780 1823	DO2 1781 1782 1783 1785 1786 1827	DO3 1787 1788 1789 1791 1792 1831	DO4 1793 1794 1795 1797 1798 1835	DO5 1799 1800 1801 1803 1804 1839	1805 1806 1807 1809 1810 1843	1811 1812 1813 1815 1816 1847	1817 1818 1819 1821 1822 1851
Set point control Mod Mode Sensor Set point DB on DB off Set back C set back H DO current mode 0=u	DO1 1775 1776 1777 1779 1780 1823 1825 noccupied 1=	DO2 1781 1782 1783 1785 1785 1786 1827 1829 =occ time sc	DO3 1787 1788 1789 1791 1792 1831 1833 h, 2=occ ove	DO4 1793 1794 1795 1797 1798 1835 1837 orride	DO5 1799 1800 1801 1803 1804 1839 1841	1805 1806 1807 1809 1810 1843 1845	1811 1812 1813 1815 1816 1847 1849	1817 1818 1819 1821 1822
Set point control Mod Sensor Set point DB on DB off Set back C set back H DO current mode 0=u DO1	DO1 1775 1776 1777 1779 1780 1823 1825 noccupied 1: DO2	DO2 1781 1782 1783 1785 1786 1827 1829 =occ time sc DO3	DO3 1787 1788 1789 1791 1792 1831 1833 h, 2=occ ove DO4	DO4 1793 1794 1795 1797 1798 1835 1837 rride DO5	DO5 1799 1800 1801 1803 1804 1839 1841 DO6	1805 1806 1807 1809 1810 1843 1845 DO7	1811 1812 1813 1815 1816 1847 1849 DO8	1817 1818 1819 1821 1822 1851
Set point control Mod Mode Sensor Set point DB on DB off Set back C set back H DO current mode 0=u	DO1 1775 1776 1777 1779 1780 1823 1825 noccupied 1=	DO2 1781 1782 1783 1785 1785 1786 1827 1829 =occ time sc	DO3 1787 1788 1789 1791 1792 1831 1833 h, 2=occ ove	DO4 1793 1794 1795 1797 1798 1835 1837 orride	DO5 1799 1800 1801 1803 1804 1839 1841	1805 1806 1807 1809 1810 1843 1845	1811 1812 1813 1815 1816 1847 1849	1817 1818 1819 1821 1822 1851
Set point control Mode Sensor Set point DB on DB off Set back C set back H DO current mode 0=u DO1 64631	DO1 1775 1776 1777 1779 1780 1823 1825 noccupied 1: DO2 64632 uts	DO2 1781 1782 1783 1785 1786 1827 1829 =occ time sc DO3 64633	DO3 1787 1788 1789 1791 1792 1831 1833 h, 2=occ ove DO4	DO4 1793 1794 1795 1797 1798 1835 1837 erride DO5 64635 off	DO5 1799 1800 1801 1803 1804 1839 1841 DO6 64636	1805 1806 1807 1809 1810 1843 1845 DO7 64637	1811 1812 1813 1815 1816 1847 1849 DO8 64638	1817 1818 1819 1821 1822 1851
Set point control Mod Sensor Set point DB on DB off Set back C set back H DO current mode 0=u DO1	DO1 1775 1776 1777 1779 1780 1823 1825 noccupied 1= DO2 64632	DO2 1781 1782 1783 1785 1786 1827 1829 =occ time sc DO3 64633	DO3 1787 1788 1789 1791 1792 1831 1833 h, 2=occ ove DO4 64634	DO4 1793 1794 1795 1797 1798 1835 1837 erride DO5 64635	DO5 1799 1800 1801 1803 1804 1839 1841 DO6	1805 1806 1807 1809 1810 1843 1845 DO7	1811 1812 1813 1815 1816 1847 1849 DO8	1817 1818 1819 1821 1822 1851

Retrieve load status. 803 to 812 1=man override, 2=pushbutton override, 3=timed override, 4=temperature alarm, 5=temperature unoccupied, 6=demand load shed, 7=holiday schedule, 8=temperature occupied, 9=daily sch, 10=timer override sec, 12=Auto/man override, 13= lead lag control, 14 time watch over ride, 15= time schedule, 16 min on/off, 17 override global, 18=global man off, 19=duty cycle, 20 Di, DO alarms, 21=Di Al alarms. 24 Logic control

HOA switch position current position

to get the current switch positions calculate 85 from the Manual on position Variable 1574 outputs 1 to 4. Variable 1575 outputs 5 to 8

4	l outputs 1	to 4.	
	output	Auto add	Off add
	1	1	2
	2	4	8
	3	16	32
	4	64	128

output	Auto add	Off add				
5	1	2				
6	4	8				
7	16	32				
8	64	128				

Analog outputs

AO position	Raw value	of			AO1	AO2	AO3	AO4	_
current posi	tion				1294	1295	1296	1297	
				nk =output 1t 0=disable, 1					
	enable	sen	set	del	act	gain	def	econ	link
AO1	1302	1303	1304	1306	1307	1308	1309	1310	1311
AO2	1312	1313	1314	1316	1317	1318	1319	1320	1321
AO3	1322	1323	1324	1326	1327	1328	1329	1330	1331
AO4	1332	1333	1334	1336	1337	1338	1339	1340	1341
							^		
AO position	s Min and I	Max			AO1	AO2	AO3	AO4	_
set positions	set positions Min					1568	1570	1572	
				Max	1567	1569	1571	1573	

Alarms

Global alarms, activate global alarms, set 1875 to 1 at slave boards, Board 1 bit 1875 will now be set you will have to reset it in a Digital input Digital output alarms. enable 60775

	1	2	3	4	5	6	7	8
Input on/off	60776	60782	60788	60794	60800	60806	60812	60818
action	60777	60783	60789	60795	60801	60807	60813	60819
output	60778	60784	60790	60796	60802	60808	60814	60820
status	60779	60785	60791	60797	60803	60809	60815	60821
time del HI	60780	60786	60792	60798	60804	60810	60816	60822
time del low	60781	60787	60793	60799	60805	60811	60817	60823
Note. the (Input or	n/off) low nibble	e = the Digita	al input	the (input on/	off) high nibl	ole = action of	on/off	

Digital input Analog output alarm. enable 60824

•	<u> </u>	2	3	4	5	6	7	8
DO & on/off	60825	60833	60841	60849	60857	60865	60873	60881
Al No &h/L	60826	60834	60842	60850	60858	60866	60874	60882
set point low	60827	60835	60843	60851	60859	60867	60875	60883
set point hi	60828	60836	60844	60852	60860	60868	60876	60884
output	60829	60837	60845	60853	60861	60869	60877	60885
status	60830	60838	60846	60854	60862	60870	60878	60886
reload hi	60831	60839	60847	60855	60863	60871	60879	60887
reload low	60832	60840	60848	60856	60864	60872	60880	60888

Alarm Var 60833 = 19. 19 bin = 000100111

	0000 - 10.10000 - 000100		
MSB action of	data LSB output data theref	ore turn out 3 on	
Action	data	LSB	Data

Action	data	LSB	Data	LSB	Data				
off	0000	DO1	0001	DO5	0101				
on	0001	DO2	0010	DO6	0110				
Dial out	0010	DO3	0011	DO7	0111				
on Dial out	0011	DO4	0100	DO8	1000				
off dial out	0100			-					
Example Al No &	h/L Low nibble - AL	number	high nibble = above or bellow set point						

Cooling

Example AI No &h/L Low nibble = AI number

Dead band

high nibble = above or bellow set point

heating

Links								
Output link	L1	L2	L3	L4	L5	L6	L7	L8
	15	16	17	18	19	20	21	22
Set point links Enable 61025		cool low 61026	heat low 61028		To disable set point inputs set $61054 = 0$ and $61025 = 1$.			
	1	2	3	4	5	6	7	8
set point link	61030	61033	61036	61039	61042	61045	61048	61051
link offset low	61031	61034	61037	61040	61043	61046	61049	61052
link offset high	61032	61035	61038	61041	61044	61047	61050	61053
61054 adjust heating cooling set point with input 61055 input link								
Outdoor air lock out Enab			Enable	23				
change over set point		LSB		24	MSB		25	

Logic notes.

Cause board 1 to read all global data set 1614 to 1 every so often. Power up reset counter 1601 can read and write to.

Global Plant call signals Enable global alarms first

Var 64079 counter one at board one Var 64081 counter two at board one Var 64076 signal one enable slave boards. Var 64077 signal two enable slave boards. Counter at board 1 keeps the total of slave boards that have the Variable > 0. this is used to start chillers/Boilers when there is enough demand.

Automatic soft reset.

Var 63865 1 = enable 0 = disable Var 63866 hour reset is to occur

History reset.

Analog inputs 757 & 758 set to 0 DO/DI run times 63869 & 63870 set to 0 History disable Var 60694, set to zero to disable histories

Math's

Additions number in	64039 added to	64041 result in	64043
Minus number in	64045 minus	64047 result in	64049
Multiply number in	64051 by	64053 result in	64055
Divide number in	64057 divided by	64059 result in	64061

User Variables.

Var 63767 to 63863 Odd number only (high byte used when numbers over 255 Also Var 10074 to 14074 even numbers only. Disable histories first.

Global commands

Global over ride timer. Enable= Var 1937 Var 1963 on board 1 enable global overrides enable global override on global I/O set up. use these Var on board address 1 only ex set Var 1954 to 1 will turn on DO1 on all boards. Timers. 1 2 3 4 5 6 7 8 Variable 1954 1955 1956 1957 1598 1959 1960 1961

Global script

When Global communication is enabled do not use histories at board 1.

Global Data example. 2,2,63763,63763 move B1 Var 63763 to B2 63763 3,2,63763,63765 move B1 Var 63763 to B3 63765 2,18,1771,1711 this script moves data from Var 1771 of slave board 2 to Var 1711 of board 1 2,17,1771,1711 this moves data from Var 1711 of board 1 to Var 1771 of board 2

Use 255 to broadcast a number to all boards example 255,2,1711,1711 will send contents of 1711 B1 to 1711 in all other boards

	0	1	2	3	4	5	6	7
0 to 7	0000	0001	0010	0011	0100	0101	0110	0111
8 to 15	1000	1001	1010	1011	1100	1101	1110	1111
16 to 23	10000	10001	10010	10011	10100	10101	10110	10111
24 to 31	11000	11001	11010	11011	11100	11101	11110	11111
32 to 39	100000	100001	100010	100011	100100	100101	100110	100111
40 to 47	101000	101001	101010	101011	101100	101101	101110	101111
48 to 55	110000	110001	110010	110011	110100	110101	110110	110111
56 to 63	111000	111001	111010	111011	111100	111101	111110	111111

Decimal to Binary

Appendix H Engineering notes

Graphic file structure

From a file structure standpoint, the following applies:

The first screen file name must be on LINE 34 of the text file.... The first of the 2 zeros must be on LINE 67 of the text file.... The number of lines in the file must be on LINE 101 of the text file (311 shown below)

The lines which put data on the screen must begin with increment 101, then the lines must be in numerical order. The number of lines shown on line 101 (311) will always be one more than the increment in the last line of the file.